Learn More
Direct electrical coupling between neurons can be the result of both electrotonic current transfer through gap junctions and extracellular fields. Intracellular recordings from CA1 pyramidal neurons of rat hippocampal slices showed two different types of small-amplitude coupling potentials: short-duration (5 ms) biphasic spikelets, which resembled(More)
Using the whole-cell recording technique, we have examined the slow Ca(2+)-activated afterhyperpolarization (AHP) and its underlying current (IAHP) in hippocampal CA1 neurones of brain slices obtained from mature rats. Specifically we have studied the effects of the anion component of various K+ salts commonly used to make the pipette filling solution that(More)
To date, there is little experimental evidence supporting or refuting electrotonic interactions through gap junctions in the generation and/or spread of seizure activity in the mammalian brain. We have studied gap junctional mechanisms in the in vitro calcium-free induced model of epilepsy using electrophysiological and staining techniques in the CA1 area(More)
Brain circuitry processes information by rapidly and selectively engaging functional neuronal networks. The dynamic formation of networks is often evident in rhythmically synchronized neuronal activity and tightly correlates with perceptual, cognitive and motor performances. But how synchronized neuronal activity contributes to network formation and how it(More)
1. The underlying ionic mechanisms of the postspike depolarizing afterpotential (DAP) in hippocampal dentate granule (DG) neurons of immature rats (postnatal 7- to 17-day-old) were examined using whole cell patch recordings in brain slices. 2. In current-clamp mode, the DAP followed each single action potential. Graded DAP-like responses were also evoked by(More)
Small amplitude depolarizations (fast prepotentials, spikelets) recorded in mammalian neurons are thought to represent either dendritic action potentials or presynaptic action potentials attenuated by gap junctions. We have used whole-cell recordings in an in vitro calcium-free model of epilepsy to record spikelets from CA1 neurons of the rat hippocampus.(More)
How the brain transitions into a seizure is poorly understood. Recurrent seizure-like events (SLEs) in low-Mg2+/ high-K+ perfusate were measured in the CA3 region of the intact mouse hippocampus. The SLE was divided into a "preictal phase," which abruptly turns into a higher frequency "ictal" phase. Blockade of GABA(A) receptors shortened the preictal(More)
BACKGROUND AND PURPOSE With appropriate selection, temporal lobe epilepsy is potentially curable with surgical intervention achieving seizure freedom in ~80% of individuals. MR imaging-based identification of MTS remains central to the selection process but currently relies on qualitative visual analysis. We sought to determine if new ultrastructural(More)
Patients with mesial temporal lobe epilepsy (mTLE) show structural and functional abnormalities in hippocampus and surrounding mesial temporal structures. Brain signal complexity appears to be a marker of functional integrity or capacity. We examined complexity in 8 patients with intracranial hippocampal electrodes during performance of memory tasks (scene(More)
1. We have studied macroscopic current fluctuations associated with the after-hyperpolarization current (IAHP) that follows a 200 ms voltage-clamp step to 0 mV in dentate granule (DG) neurones of the rat hippocampus. This maximally effective stimulus produced a peak IAHP of 205 +/- 20 pA. Background noise was minimized by using the whole-cell(More)