Taufik A. Valiante

Learn More
Brain circuitry processes information by rapidly and selectively engaging functional neuronal networks. The dynamic formation of networks is often evident in rhythmically synchronized neuronal activity and tightly correlates with perceptual, cognitive and motor performances. But how synchronized neuronal activity contributes to network formation and how it(More)
PURPOSE The clinical relevance of resting state functional connectivity in neurologic disorders, including mesial temporal lobe epilepsy (mTLE), remains unclear. This study investigated how connectivity in the default mode network changes with unilateral damage to one of its nodes, the hippocampus (HC), and how such connectivity can be exploited clinically(More)
Autobiographical memory (AM) provides the opportunity to study interactions among brain areas that support the search for a specific episodic memory (construction), and the later experience of mentally reliving it (elaboration). While the hippocampus supports both construction and elaboration, it is unclear how hippocampal-neocortical connectivity differs(More)
Fractal methods offer an invaluable means of investigating turbulent nonlinearity in non-stationary biomedical recordings from the brain. Here, we investigate properties of complexity (i.e. the correlation dimension, maximum Lyapunov exponent, 1/f(γ) noise and approximate entropy) and multifractality in background neuronal noise-like activity underlying(More)
How the brain transitions into a seizure is poorly understood. Recurrent seizure-like events (SLEs) in low-Mg2+/ high-K+ perfusate were measured in the CA3 region of the intact mouse hippocampus. The SLE was divided into a "preictal phase," which abruptly turns into a higher frequency "ictal" phase. Blockade of GABA(A) receptors shortened the preictal(More)
Computational models predict that focal damage to the Default Mode Network (DMN) causes widespread decreases and increases of functional DMN connectivity. How such alterations impact functioning in a specific cognitive domain such as episodic memory remains relatively unexplored. Here, we show in patients with unilateral medial temporal lobe epilepsy (mTLE)(More)
OBJECT The postischemic brain has greater susceptibility to epileptogenic activity than physiologically healthy tissue. Epileptiform discharges are thought to exacerbate postischemic brain function. The aim of this study was to develop an in vivo focal stroke model in rats to characterize epileptiform activity. METHODS The authors developed a parasagittal(More)
Anterior cingulate and lateral prefrontal cortex (ACC/PFC) are believed to coordinate activity to flexibly prioritize the processing of goal-relevant over irrelevant information. This between-area coordination may be realized by common low-frequency excitability changes synchronizing segregated high-frequency activations. We tested this coordination(More)
Visual exploration in primates depends on saccadic eye movements (SEMs) that cause alternations of neural suppression and enhancement. This modulation extends beyond retinotopic areas, and is thought to facilitate perception; yet saccades may also influence brain regions critical for forming memories of these exploratory episodes. The hippocampus, for(More)
"Noise," or noise-like activity (NLA), defines background electrical membrane potential fluctuations at the cellular level of the nervous system, comprising an important aspect of brain dynamics. Using whole-cell voltage recordings from fast-spiking stratum oriens interneurons and stratum pyramidale neurons located in the CA3 region of the intact mouse(More)