Learn More
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor system. Recent work in rodent models of ALS has shown that insulin-like growth factor-1 (IGF-1) slows disease progression when delivered at disease onset. However, IGF-1's mechanism of action along the neuromuscular axis remains unclear. In this study, symptomatic ALS mice(More)
Pompe disease (glycogen storage disease II) is caused by mutations in the acid alpha-glucosidase gene. The most common form is rapidly progressive with glycogen storage, particularly in muscle, which leads to profound weakness, cardiac failure, and death by the age of 2 years. Although usually considered a muscle disease, glycogen storage also occurs in the(More)
Niemann-Pick type A disease is a lysosomal storage disorder caused by a deficiency in acid sphingomyelinase (ASM) activity. Previously we showed that storage pathology in the ASM knockout (ASMKO) mouse brain can be corrected by adeno-associated virus serotype 2 (AAV2)-mediated gene transfer. The present experiment compared the relative therapeutic efficacy(More)
We have established a line of transgenic mice expressing the A. victoria green fluorescent protein (GFP) under the control of the promoter for vascular endothelial growth factor (VEGF). Mice bearing the transgene show green cellular fluorescence around the healing margins and throughout the granulation tissue of superficial ulcerative wounds. Implantation(More)
Metabolic dysfunction is an important modulator of disease course in amyotrophic lateral sclerosis (ALS). We report here that a familial mouse model (transgenic mice over-expressing the G93A mutation of the Cu/Zn superoxide dismutase 1 gene) of ALS enters a progressive state of acidosis that is associated with several metabolic (hormonal) alternations that(More)
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron cell death in the cortex, brainstem, and spinal cord. Extensive efforts have been made to develop trophic factor-based therapies to enhance motor neuron survival; however, achievement of adequate therapeutic delivery to all regions of the corticospinal(More)
Niemann-Pick A (NPA) disease is a lysosomal storage disorder (LSD) caused by a deficiency in acid sphingomyelinase (ASM) activity. Previously, we showed that the storage pathology in the ASM knockout (ASMKO) mouse brain could be corrected by intracerebral injections of cell, gene and protein based therapies. However, except for instances where distal areas(More)
Niemann-Pick A disease (NPA) is a fatal lysosomal storage disorder caused by a deficiency in acid sphingomyelinase (ASM) activity. The lack of functional ASM results in cellular accumulation of sphingomyelin and cholesterol within distended lysosomes throughout the brain. In this study, we investigated the potential of AAV-mediated expression of ASM to(More)
Niemann-Pick disease is caused by a genetic deficiency in acid sphingomyelinase (ASM) leading to the intracellular accumulation of sphingomyelin and cholesterol in lysosomes. In the present study, we evaluated the effects of direct intracerebral transplantation of neural progenitor cells (NPCs) on the brain storage pathology in the ASM knock-out (ASMKO)(More)
Niemann-Pick disease (NPD) is caused by the loss of acid sphingomyelinase (ASM) activity, which results in widespread accumulation of undegraded lipids in cells of the viscera and CNS. In this study, we tested the effect of combination brain and systemic injections of recombinant adeno-associated viral vectors encoding human ASM (hASM) in a mouse model of(More)