Tatyana V Abramova

Learn More
Conjugates of 2'-deoxyguanosine, L-tryptophan and benzophenone designed to study pathways of fast radical reactions by the photo Chemically Induced Dynamic Nuclear Polarization (photo-CIDNP) method were obtained by the phosphotriester block liquid phase synthesis. The phosphotriester approach to the oligonucleotide synthesis was shown to be a versatile and(More)
The advantages and disadvantages of existing approaches to the synthesis of oligodeoxyribonucleotides (ODN) are discussed focusing on large-scale methods. The liquid phase and solid supported synthesis and the synthesis on soluble polymers are discussed. Different problems concerning the methods and implementation of the ODN synthesis are outlined depending(More)
A versatile strategy for the synthesis of $$\hbox {NAD}^{+}$$ NAD + mimetics was developed, involving an efficient pyrophosphate linkage formation in key conjugates containing a functional amino group which acts as useful reactive anchor for further derivatization. These $$\hbox {NAD}^{+}$$ NAD + mimetics consist of ADP conjugated through a diphosphate(More)
The photo-oxidation of purine nucleotides adenosine-5'-monophosphate (AMP) and guanosine-5'-monophosphate (GMP) by 3,3',4,4'-benzophenone tetracarboxylic acid (TCBP) has been investigated in aqueous solutions using nanosecond laser flash photolysis (LFP) and time-resolved chemically induced dynamic nuclear polarization (CIDNP). The pH dependences of(More)
An efficient solid-phase-supported peptide synthesis (SPPS) of morpholinoglycine oligonucleotide (MorGly) mimics has been developed. The proposed strategy includes a novel specially designed labile linker group containing the oxalyl residue and the 2-aminomethylmorpholino nucleoside analogues as first subunits.
Uracyl and adenine containing oligomers derived from carboxymethyl derivatives of morpholine nucleoside analogues (MorGly) were synthesized using the methods of peptide chemistry. Capillary electrophoresis conditions were found for the analysis of the homogeneity of the nucleic acid mimics protonated at physiological pH. The thermal stability of(More)
  • 1