Tatyana O. Sharpee

Learn More
Sensory neuroscience seeks to understand how the brain encodes natural environments. However, neural coding has largely been studied using simplified stimuli. In order to assess whether the brain's coding strategy depends on the stimulus ensemble, we apply a new information-theoretic method that allows unbiased calculation of neural filters (receptive(More)
The term 'visual adaptation' describes the processes by which the visual system alters its operating properties in response to changes in the environment. These continual adjustments in sensory processing are diagnostic as to the computational principles underlying the neural coding of information and can have profound consequences for our perceptual(More)
Cortical receptive fields represent the signal preferences of sensory neurons. Receptive fields are thought to provide a representation of sensory experience from which the cerebral cortex may make interpretations. While it is essential to determine a neuron's receptive field, it remains unclear which features of the acoustic environment are specifically(More)
Sensory cortical anatomy has identified a canonical microcircuit underlying computations between and within layers. This feed-forward circuit processes information serially from granular to supragranular and to infragranular layers. How this substrate correlates with an auditory cortical processing hierarchy is unclear. We recorded simultaneously from all(More)
Learning-dependent cortical encoding has been well described in single neurons. But behaviorally relevant sensory signals drive the coordinated activity of millions of cortical neurons; whether learning produces stimulus-specific changes in population codes is unknown. Because the pattern of firing rate correlations between neurons--an emergent property of(More)
Along most neural pathways, the spike trains transmitted from one neuron to the next are altered. In the process, neurons can either achieve a more efficient stimulus representation, or extract some biologically important stimulus parameter, or succeed at both. We recorded the inputs from single retinal ganglion cells and the outputs from connected lateral(More)
Many learned behaviors are thought to require the activity of high-level neurons that represent categories of complex signals, such as familiar faces or native speech sounds. How these complex, experience-dependent neural responses emerge within the brain's circuitry is not well understood. The caudomedial mesopallium (CMM), a secondary auditory region in(More)
Understanding neural responses with natural stimuli has increasingly become an essential part of characterizing neural coding. Neural responses are commonly characterized by a linear-nonlinear (LN) model, in which the output of a linear filter applied to the stimulus is transformed by a static nonlinearity to determine neural response. To estimate the(More)
Sensory neurons exhibit two universal properties: sensitivity to multiple stimulus dimensions, and adaptation to stimulus statistics. How adaptation affects encoding along primary dimensions is well characterized for most sensory pathways, but if and how it affects secondary dimensions is less clear. We studied these effects for neurons in the avian(More)
The ability to evaluate variability in the environment is vital for making optimal behavioral decisions. Here we show that Caenorhabditis elegans evaluates variability in its food environment and modifies its future behavior accordingly. We derive a behavioral model that reveals a critical period over which information about the food environment is acquired(More)