Learn More
Sensory neuroscience seeks to understand how the brain encodes natural environments. However, neural coding has largely been studied using simplified stimuli. In order to assess whether the brain's coding strategy depends on the stimulus ensemble, we apply a new information-theoretic method that allows unbiased calculation of neural filters (receptive(More)
Along most neural pathways, the spike trains transmitted from one neuron to the next are altered. In the process, neurons can either achieve a more efficient stimulus representation, or extract some biologically important stimulus parameter, or succeed at both. We recorded the inputs from single retinal ganglion cells and the outputs from connected lateral(More)
The term 'visual adaptation' describes the processes by which the visual system alters its operating properties in response to changes in the environment. These continual adjustments in sensory processing are diagnostic as to the computational principles underlying the neural coding of information and can have profound consequences for our perceptual(More)
Cortical receptive fields represent the signal preferences of sensory neurons. Receptive fields are thought to provide a representation of sensory experience from which the cerebral cortex may make interpretations. While it is essential to determine a neuron's receptive field, it remains unclear which features of the acoustic environment are specifically(More)
This article compares a family of methods for characterizing neural feature selectivity using natural stimuli in the framework of the linear-nonlinear model. In this model, the spike probability depends in a nonlinear way on a small number of stimulus dimensions. The relevant stimulus dimensions can be found by optimizing a Rényi divergence that quantifies(More)
Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a small number of features due to the curse of dimensionality. To overcome these issues, we propose two new dimensionality(More)
The multidimensional computations performed by many biological systems are often characterized with limited information about the correlations between inputs and outputs. Given this limitation, our approach is to construct the maximum noise entropy response function of the system, leading to a closed-form and minimally biased model consistent with a given(More)
Many learned behaviors are thought to require the activity of high-level neurons that represent categories of complex signals, such as familiar faces or native speech sounds. How these complex, experience-dependent neural responses emerge within the brain's circuitry is not well understood. The caudomedial mesopallium (CMM), a secondary auditory region in(More)
Understanding neural responses with natural stimuli has increasingly become an essential part of characterizing neural coding. Neural responses are commonly characterized by a linear-nonlinear (LN) model, in which the output of a linear filter applied to the stimulus is transformed by a static nonlinearity to determine neural response. To estimate the(More)
This paper compares several statistical methods for analyzing neural feature selectivity with natural stimuli. Despite the non-Gaussian character of correlations in natural stimuli, several relevant stimulus dimensions can be found by maximizing either information or, as is demonstrated here, variance. In the case of information, the relevance of each(More)