Learn More
Mg2+ interacts with the alpha subunits of guanine nucleotide-binding regulatory proteins (G proteins) in the presence of guanosine-5'-[gamma-thio]triphosphate (GTP-gamma S) to form a highly fluorescent complex from which nucleotide dissociates very slowly. The apparent Kd for interaction of G alpha X GTP gamma S with Mg2+ is approximately 5 nM, similar to(More)
Mastoparan, a peptide toxin from wasp venom, is a nonspecific secretagogue. We show here that mastoparan increases the GTPase activity and the rate of nucleotide binding of several purified GTP-binding regulatory proteins (G proteins) whose function is to couple cell-surface receptors to intracellular mediators. Mastoparan accelerated(More)
Mastoparan (MP), a cationic, amphiphilic tetradecapeptide, stimulates guanine nucleotide exchange by GTP-binding regulatory proteins (G proteins) in a manner similar to that of G protein-coupled receptors. 1) MP stimulated exchange by isolated G protein alpha subunits and alpha beta gamma trimers. Relative stimulation was greater with alpha beta gamma(More)
The activities of GTP-dependent regulatory proteins (G proteins) are modulated by anions. Thus, NaCl stimulated the intensity of the intrinsic tryptophan fluorescence of Go alpha with bound guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) and GTP, but not GDP. This mimics the effect of Mg2+. The salt also increased the affinity of Go alpha for GTP gamma S(More)
The intensity of the tryptophan fluorescence of the alpha subunits of guanine nucleotide-binding regulatory proteins increases when they bind guanosine 5'-O-(3-thio)triphosphate (GTY gamma S). The kinetics of the fluorescence enhancement and of the measured binding of [35S]GTP gamma S are well correlated. The addition of Mg2+ to the nucleotide-bound(More)
The structures of the guanosine 5'O-(3-thio)triphosphate (GTP gamma S)-containing guanine nucleotide-binding regulatory proteins (G proteins) are distinct from those of the GDP-containing forms. One indication of the conformational change caused by GTP gamma S is a Mg2+-sensitive increase in the intensity of the proteins' tryptophan fluorescence(More)
The turkey beta-adrenergic receptor (beta-AR), the m1 and m2 forms of the human muscarinic cholingeric receptor (MAChR) and several other mutant and wild-type G protein-coupled receptors were produced in insect Sf9 cells by infection with recombinant baculoviruses. Maximal expression for most receptors was 5-30 pmol receptor/mg protein (2-15 nmol/liter(More)
A substance P (SP) analog, [D-Pro4,D-Trp7,9,10] SP4-11, is known to inhibit the actions of various structurally unrelated messenger molecules as well as SP. Our studies on the effects of this peptide on the regulation of purified G proteins by receptor showed that at least some of the biological effects of the peptide can be explained by the ability of the(More)
The neuronal protein GAP-43 is thought to play a role in determining growth-cone motility, perhaps as an intracellular regulator of signal transduction, but its molecular mechanism of action has remained unclear. We find that GAP-43, when microinjected into Xenopus laevis oocytes, increases the oocyte response to G protein-coupled receptor agonists by 10-(More)