Tatsuya Sawasaki

Learn More
Current cell-free protein synthesis systems can synthesize proteins with high speed and accuracy, but produce only a low yield because of their instability over time. Here we describe the preparation of a highly efficient but also robust cell-free system from wheat embryos. We first investigated the source of the instability of existing systems in light of(More)
We report a cell-free system for the high-throughput synthesis and screening of gene products. The system, based on the eukaryotic translation apparatus of wheat seeds, has significant advantages over other commonly used cell-free expression systems. To maximize the yield and throughput of the system, we optimized the mRNA UTRs, designed an expression(More)
Human immunodeficiency virus type 1 (HIV-1) utilizes the macromolecular machinery of the infected host cell to produce progeny virus. The discovery of cellular factors that participate in HIV-1 replication pathways has provided further insight into the molecular basis of virus-host cell interactions. Here, we report that the suppressor of cytokine signaling(More)
Following the success of genome sequencing projects, attention has now turned to studies of the structure and function of proteins. Although cell-based expression systems for protein production have been widely used, they have certain limitations in terms of the quality and quantity of the proteins produced and for high-throughput production. Many of these(More)
Plant Ca2+ signals are involved in a wide array of intracellular signaling pathways after pest invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate the signaling following Ca2+ influx after insect herbivory. However, until now this prediction was not testable. To investigate the roles CPKs play(More)
A high-throughput cell-free protein synthesis method has been described. The methodology is based on a bilayer diffusion system that enables the continuous supply of substrates, together with the continuous removal of small byproducts, through a phase between the translation mixture and substrate mixture. With the use of a multititer plate the system was(More)
Linear ubiquitin chains generated by the linear ubiquitin chain assembly complex (LUBAC) play an important role in NF-κB activation. However, the regulation of linear ubiquitin chain generation by LUBAC is not well characterized. Here, we identified two deubiquitinating enzymes (DUBs), ovarian tumor DUB with linear linkage specificity (OTULIN/Gumby/FAM105B)(More)
Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a(More)
One of the major bottlenecks in malaria research has been the difficulty in recombinant protein expression. Here, we report the application of the wheat germ cell-free system for the successful production of malaria proteins. For proof of principle, the Pfs25, PfCSP, and PfAMA1 proteins were chosen. These genes contain very high A/T sequences and are also(More)
Potentially, autoimmune diseases develop from a combination of multiple genes with allelic polymorphisms. An MRL/Mp-Fas(lpr) (/) (lpr) (MRL/lpr) strain of mice develops autoimmune diseases, including lupus nephritis, but another lpr strain, C3H/HeJ-Fas(lpr) (/) (lpr) (C3H/lpr) does not. This indicates that MRL polymorphic genes are involved in the(More)