Tatsusada Yoshida

Learn More
Quantitative structure-activity relationship analyses on the free energy change during complex formation between substituted benzenesulfonamides (BSAs) and bovine carbonic anhydrase II (bCA II) were performed using generilized Born/surface area (GB/SA) and ab initio fragment molecular orbital (FMO) calculations for the whole complex structures. The result(More)
Human lysosomal protective protein/cathepsin A (CathA) is a multifunctional protein that exhibits not only protective functions as to lysosomal glycosidases, i.e., neuraminidase 1 (NEU1) and beta-galactosidase (GLB), but also its own serine carboxypeptidase activity, and exhibits conserved structural similarity to yeast and wheat homologs (CPY and CPW). Our(More)
We carried out full ab initio molecular orbital calculations on complexes between neuraminidase-1 (N1-NA) in the influenza A virus and a series of eight sialic acid analogues including oseltamivir (Tamiflu) in order to quantitatively examine the binding mechanism and variation in the inhibitory potency at the atomic and electronic levels. FMO-MP2-IFIE(More)
The rate of hydrogen atom abstraction from phenolic compounds by a radical is known to be often linear with the Hammett substitution constant σ(+), defined using the S(N)1 solvolysis rates of substituted cumyl chlorides. Nevertheless, a physicochemical reason for the above "empirical fact" has not been fully revealed. The transition states of complexes(More)
We carried out full ab initio fragment molecular orbital (FMO) calculations for complexes comprising human neuraminidase-2 (hNEU2) and sialic acid analogues including anti-influenza drugs zanamivir (Relenza) and oseltamivir (Tamiflu) in order to examine the variation in the observed inhibitory activity toward hNEU2 at the atomic and electronic levels. We(More)
We proposed a novel QSAR (quantitative structure-activity relationship) procedure called LERE (linear expression by representative energy terms)-QSAR involving molecular calculations such as ab initio fragment molecular orbital and generalized Born/surface area ones. We applied LERE-QSAR to two datasets for the free-energy changes during complex formation(More)
One of the most challenging problems in computer-aided drug discovery is the accurate prediction of the binding energy between a ligand and a protein. For accurate estimation of net binding energy ΔEbind in the framework of the Hartree-Fock (HF) theory, it is necessary to estimate two additional energy terms; the dispersion interaction energy (Edisp) and(More)
One of the most challenging problems in computational chemistry and in drug discovery is the accurate prediction of the binding energy between a ligand and a protein receptor. It is well known that the binding energy calculated with the Hartree-Fock molecular orbital theory (HF) lacks the dispersion interaction energy that significantly affects the accuracy(More)
CYP2D6, a cytochrome P450 isoform, significantly contributes to the metabolism of many clinically important drugs. Thioridazine (THD) is one of the phenothiazine-type antipsychotics, which exhibit dopamine D2 antagonistic activity. THD shows characteristic metabolic profiles compared to other phenothiazine-type antipsychotics such as chlorpromazine. The(More)
The human sodium-glucose co-transporter 2 (hSGLT2) is a transporter responsible for reabsorption of glucose in the proximal convoluted tubule of the kidney. hSGLT2 inhibitors, including luseogliflozin, have been developed as drugs for type 2 diabetes mellitus. Only luseogliflozin contains a thiosugar ring in its chemical structure, while other hSGLT2(More)