Tatsusada Yoshida

  • Citations Per Year
Learn More
Quantitative structure-activity relationship analyses on the free energy change during complex formation between substituted benzenesulfonamides (BSAs) and bovine carbonic anhydrase II (bCA II) were performed using generilized Born/surface area (GB/SA) and ab initio fragment molecular orbital (FMO) calculations for the whole complex structures. The result(More)
Human lysosomal protective protein/cathepsin A (CathA) is a multifunctional protein that exhibits not only protective functions as to lysosomal glycosidases, i.e., neuraminidase 1 (NEU1) and beta-galactosidase (GLB), but also its own serine carboxypeptidase activity, and exhibits conserved structural similarity to yeast and wheat homologs (CPY and CPW). Our(More)
We carried out full ab initio molecular orbital calculations on complexes between neuraminidase-1 (N1-NA) in the influenza A virus and a series of eight sialic acid analogues including oseltamivir (Tamiflu) in order to quantitatively examine the binding mechanism and variation in the inhibitory potency at the atomic and electronic levels. FMO-MP2-IFIE(More)
We proposed a novel QSAR (quantitative structure-activity relationship) procedure called LERE (linear expression by representative energy terms)-QSAR involving molecular calculations such as ab initio fragment molecular orbital and generalized Born/surface area ones. We applied LERE-QSAR to two datasets for the free-energy changes during complex formation(More)
We carried out full ab initio fragment molecular orbital (FMO) calculations for complexes comprising human neuraminidase-2 (hNEU2) and sialic acid analogues including anti-influenza drugs zanamivir (Relenza) and oseltamivir (Tamiflu) in order to examine the variation in the observed inhibitory activity toward hNEU2 at the atomic and electronic levels. We(More)
Accurate prediction of the intermolecular interaction energy (ΔEbind) has been a challenging and serious problem. Current in silico drug screening demands efficient and accurate evaluation of ΔEbind for ligands and their target proteins. It is desirable that ΔEbind including the dispersion interaction energy (Edisp) is calculated using a post-Hartree-Fock(More)
The reaction mechanism of trypsin was studied by applying DFT and ab initio molecular orbital (MO) calculations to complexes of trypsin with a congeneric series of eight para-substituted hippuric acid phenyl esters, for which a previous quantitative structureactivity relationship (QSAR) study revealed nice linearity of Hammett substitution constant σ(-)(More)
The Hammett σ constant has for a long time been known to be one of most important linear free-energy related parameters that correlate with biological activity. It is a conventionally used electronic parameter in studies of enzymatic quantitative structure-activity relationships (QSAR). However, it is not necessarily obvious why σ represents variations in(More)
Cathepsin A is a mammalian lysosomal enzyme that catalyzes the hydrolysis of the carboxy-terminal amino acids of polypeptides and also regulates beta-galactosidase and neuraminidase-1 activities through the formation of a multienzymic complex in lysosomes. Human cathepsin A (hCathA), yeast carboxypeptidase (CPY), and wheat carboxypeptidase II (CPW) belong(More)
We previously proposed a novel QSAR (quantitative structure-activity relationship) procedure called LERE (linear expression by representative energy terms)-QSAR involving molecular calculations such as an ab initio fragment molecular orbital ones. In the present work, we applied LERE-QSAR to complex formation of matrix metalloproteinase-9 (MMP-9) with a(More)