Tatsusada Yoshida

Learn More
Quantitative structure-activity relationship analyses on the free energy change during complex formation between substituted benzenesulfonamides (BSAs) and bovine carbonic anhydrase II (bCA II) were performed using generilized Born/surface area (GB/SA) and ab initio fragment molecular orbital (FMO) calculations for the whole complex structures. The result(More)
We carried out full ab initio molecular orbital calculations on complexes between neuraminidase-1 (N1-NA) in the influenza A virus and a series of eight sialic acid analogues including oseltamivir (Tamiflu) in order to quantitatively examine the binding mechanism and variation in the inhibitory potency at the atomic and electronic levels. FMO-MP2-IFIE(More)
We carried out full ab initio fragment molecular orbital (FMO) calculations for complexes comprising human neuraminidase-2 (hNEU2) and sialic acid analogues including anti-influenza drugs zanamivir (Relenza) and oseltamivir (Tamiflu) in order to examine the variation in the observed inhibitory activity toward hNEU2 at the atomic and electronic levels. We(More)
Cathepsin A is a mammalian lysosomal enzyme that catalyzes the hydrolysis of the carboxy-terminal amino acids of polypeptides and also regulates beta-galactosidase and neuraminidase-1 activities through the formation of a multienzymic complex in lysosomes. Human cathepsin A (hCathA), yeast carboxypeptidase (CPY), and wheat carboxypeptidase II (CPW) belong(More)
  • 1