Tatsuo Shibata

Learn More
Because intracellular processes are inherently noisy, stochastic reactions process noisy signals in cellular signal transduction. One essential feature of biological signal transduction systems is the amplification of small changes in input signals. However, small random changes in the input signals could also be amplified, and the transduction reaction can(More)
Gene regulatory networks contain several substructures called network motifs, which frequently exist throughout the networks. One of such motifs found in Escherichia coli, Saccharomyces cerevisiae, and Drosophila melanogaster is the feed-forward loop, in which an effector regulates its target by a direct regulatory interaction and an indirect interaction(More)
Spemann's organizer plays a key role in dorsal-ventral (DV) patterning in the amphibian embryo by secreting diffusible proteins such as Chordin, an antagonist to ventralizing bone morphogenetic proteins (BMPs). The DV patterning is so robust that an amphibian embryo with its ventral half surgically removed can develop into a smaller but proportionally(More)
Morphogenetic epithelial movement occurs during embryogenesis and drives complex tissue formation. However, how epithelial cells coordinate their unidirectional movement while maintaining epithelial integrity is unclear. Here we propose a novel mechanism for collective epithelial cell movement based on Drosophila genitalia rotation, in which epithelial(More)
Phosphatidylinositol (PtdIns) lipids have been identified as key signaling mediators for random cell migration as well as chemoattractant-induced directional migration. However, how the PtdIns lipids are organized spatiotemporally to regulate cellular motility and polarity remains to be clarified. Here, we found that self-organized waves of PtdIns(More)
RAS is an important cell signaling molecule, regulating the activities of various effector proteins, including the kinase c-RAF (RAF). Despite the critical function of RAS signaling, the activation kinetics have not been analyzed experimentally in living cells for any of the RAS effectors. Here, we analyzed the kinetics of RAF activation on the plasma(More)
We consider the physical limit of the directional sensing ability of living cells, as in chemotaxis, under a low concentration and shallow chemoattractant gradient. Elliptic cells sense the direction, which is a stochastic variable of a characteristic distribution with peaks at directions not necessarily to the gradient. The peak positions depend on the(More)
Single-molecule imaging analysis of chemotactic response in eukaryotic cells has revealed a stochastic nature in the input signals and the signal transduction processes. This leads to a fundamental question about the signaling processes: how does the signaling system operate under stochastic fluctuations or noise? Here, we report a stochastic model of(More)
During early development, epithelial cells form a monolayer sheet and migrate in a uniform direction. Here, we address how this collective migration can occur without breaking the cell-to-cell attachments. Repeated contraction and expansion of the cell-to-cell interfaces enables the cells to rearrange their positions autonomously within the sheet. We show(More)
The dysregulation of Ras-RAF signaling is associated with many types of human cancer. However, the kinetic and dynamic features of the mutual molecular recognition of Ras and RAF remain unknown. Here, we developed a technique for imaging single-pair fluorescence resonance energy transfer in living cells, and coupled this technique to single-molecule kinetic(More)