Tatsuo Matsunaga

Learn More
Sensorineural hearing loss (SNHL) is one of the most common disabilities in human, and genetics is an important aspect for SNHL, especially in children. In recent 10 years, our knowledge in genetic causes of SNHL has made a significant advance, and now it is used for diagnosis and other clinical practices. Hereditary hearing loss can be classified into(More)
BACKGROUND Genetic tests for hereditary hearing loss inform clinical management of patients and can provide the first step in the development of therapeutics. However, comprehensive genetic tests for deafness genes by Sanger sequencing is extremely expensive and time-consuming. Next-generation sequencing (NGS) technology is advantageous for genetic(More)
Mitochondrial dysfunction in the cochlea is thought to be an important cause of sensorineural hearing loss. Recently, we have established a novel rat model with acute hearing impairment caused by exposure to the mitochondrial toxin 3-nitropropionic acid (3-NP) to analyze the mechanism of cochlear mitochondrial dysfunction. Both permanent and temporary(More)
Acute mitochondrial dysfunction in the cochlea is likely to result in hearing loss as a consequence of local energy shortage, similar to ischemia- or noise-induced hearing loss. To establish an animal model of acute cochlear mitochondrial dysfunction, we applied a mitochondrial toxin, 3-nitropropionic acid (3-NP) in the rat cochlea. Rats treated with 500mM(More)
Mutations in the GJB2 (connexin 26, Cx26) gene are the major cause of nonsyndromic hearing impairment in many populations. Genetic testing offers opportunities to determine the cause of deafness and predict the course of hearing, enabling the prognostication of language development. In the current study, we compared severity of hearing impairment in 60(More)
This study investigated the existence of stem-like cells in established head and neck squamous cell carcinoma (HNSCC) lines, HSC3 and HSC4. Flow cytometric analysis confirmed the presence of side population (SP) cells excluding Hoechst 33342 in HSC4 cells (0.37+/-0.06%) but not HSC3 cells in a reserpine-sensitive manner. After sorting, the SP cells(More)
We previously reported that treatment of the rat cochlea with a mitochondrial toxin, 3-nitropropionic acid (3-NP), causes temporary to permanent hearing loss depending on the amount of the drug. Furthermore, apoptosis of cochlear lateral wall fibrocytes, which are important for maintaining the endolymph, is a predominant pathological feature in this animal(More)
OBJECTIVES/HYPOTHESIS To investigate possible association of hearing loss and SLC26A4 mutations with the subgroups of enlarged vestibular aqueduct (EVA) morphology in Japanese subjects with hearing loss. STUDY DESIGN Retrospective multicenter study. METHODS Forty-seven subjects who had vestibular aqueduct with midpoint diameter >1 mm by computed(More)
In the mammalian cochlea, both the sensory cells-called hair cells (HCs)-and nonsensory cells such as supporting cells (SCs) and mesenchymal cells participate in proper auditory function through the expression of various functional molecules. During development, expression of certain genes is repressed through genomic methylation, one of the major(More)
Mutation of KCNQ4 has been reported to cause autosomal dominant non-syndromic hearing loss (DFNA2A) that usually presents as progressive hearing loss starting from mild to moderate hearing loss during childhood. Here, we identified a novel KCNQ4 mutation, c.1044_1051del8, in a family with autosomal recessive non-syndromic hearing loss. The proband was(More)