Tatsuo Hoshino

Learn More
A gene has been cloned from Xanthophyllomyces dendrorhous by complementation of astaxanthin formation in a β-carotene accumulating mutant. It consists of 3,166 bp and contains 17 introns. For the β-carotene mutant ATCC 96815, a single point mutation in the splicing sequence of intron 8 was found. The resulting improper splicing of the mRNA results in an(More)
D-Sorbitol dehydrogenase was solubilized from the membrane fraction of Gluconobacter suboxydans IFO 3255 with Triton X-100 in the presence of D-sorbitol. Purification of the enzyme was done by fractionation with column chromatographies of DEAE-Cellulose, DEAE-Sepharose, hydroxylapatite, and Sephacryl HR300 in the presence of Triton X-100. The molecular mass(More)
Acetic acid bacteria, especially Gluconobacter species, have been known to catalyze the extensive oxidation of sugar alcohols (polyols) such as D-mannitol, glycerol, D-sorbitol, and so on. Gluconobacter species also oxidize sugars and sugar acids and uniquely accumulate two different keto-D-gluconates, 2-keto-D-gluconate and 5-keto-D-gluconate, in the(More)
The sldA gene that encodes the D-sorbitol dehydrogenase (SLDH) from Gluconobacter suboxydans IFO 3255 was cloned and sequenced. It encodes a polypeptide of 740 residues, which contains a signal sequence of 24 residues. SLDH had 35-37% identity to the membrane-bound quinoprotein glucose dehydrogenases (GDHs) from E. coli, Gluconobacter oxydans, and(More)
The NADPH-dependent L-sorbose reductase (SR) of L-sorbose-producing Gluconobacter suboxydans IFO 3291 contributes to intracellular L-sorbose assimilation. The gene disruptant showed no SR activity and did not assimilate the once-produced L-sorbose, indicating that the SR functions mainly as an L-sorbose-reducing enzyme in vivo and not as a(More)
Ketogulonicigenium vulgare DSM 4025, known as a 2-keto-L-gulonic acid producing strain from L-sorbose via L-sorbosone, surprisingly produced L-ascorbic acid from D-sorbitol, L-sorbose, L-gulose, and L-sorbosone as the substrate under a growing or resting condition. As the best result, K. vulgare DSM 4025 produced 1.37 g per liter of L-AA from 5.00 g per(More)
A novel enzyme, L-sorbosone dehydrogenase 1 (SNDH1), which directly converts L-sorbosone to L-ascorbic acid (L-AA), was isolated from Ketogulonicigenium vulgare DSM 4025 and characterized. This enzyme was a homooligomer of 75-kDa subunits containing pyrroloquinoline quinone (PQQ) and heme c as the prosthetic groups. Two isozymes of SNDH, SNDH2 consisting of(More)
The D-sorbitol dehydrogenase gene, sldA, and an upstream gene, sldB, encoding a hydrophobic polypeptide, SldB, of Gluconobacter suboxydans IFO 3255 were disrupted in a check of their biological functions. The bacterial cells with the sldA gene disrupted did not produce L-sorbose by oxidation of D-sorbitol in resting-cell reactions at pHs 4.5 and 7.0,(More)
Gluconobacter strains effectively produce L-sorbose from D-sorbitol because of strong activity of the D-sorbitol dehydrogenase (SLDH). L-sorbose is one of the important intermediates in the industrial vitamin C production process. Two kinds of membrane-bound SLDHs, which consist of three subunits, were reportedly found in Gluconobacter strains [Agric. Biol.(More)