Tatsuhiro Kishi

Learn More
This paper describes the development of a new expressive robotic head for the bipedal humanoid robot. Facial expressions of our old robotic head have low facial expression recognition rate and in order to improve it we asked amateur cartoonists to create computer graphics (CG) images. To realize such expressions found in the CGs, the new head was provided(More)
This paper describes the bipedal humanoid robot that makes human laugh with its whole body expression and affect human's psychological state. In order to realize "Social interaction" between human and robot, the robot has to affect human's psychological state actively. We focused on "laugh" because it can be thought as a typical example for researching(More)
This paper describes a walking stabilization control based on gait analysis for a biped humanoid robot. We have developed a human-like foot mechanism mimicking the medial longitudinal arch to clarify the function of the foot arch structure. To evaluate the arch function through walking experiments using a robot, a walking stabilization control should also(More)
This paper describes the implementation in a walking humanoid robot of a mental model, allowing the dynamical change of the emotional state of the robot based on external stimuli; the emotional state affects the robot decisions and behavior, and it is expressed with both facial and whole-body patterns. The mental model is applied to KOBIAN-R, a 65-DoFs(More)
In this paper, we describe a human gesture recognition system developed to make a humanoid robot understand non-verbal human social behaviors, and we present the results of preliminary experiments to demonstrate the feasibility of the proposed method. In particular, we have focused on the detection and recognition of laughter, a very peculiar human social(More)
The Uncanny valley hypothesis, which tells us that almost-human characteristics in a robot or a device could cause uneasiness in human observers, is an important research theme in the Human Robot Interaction (HRI) field. Yet, that phenomenon is still not well-understood. Many have investigated the external design of humanoid robot faces and bodies but only(More)
Human running motion can be modeled by a spring loaded inverted pendulum (SLIP). However, this model, despite being widely used in robotics, does not include human-like pelvic motion. In this study, we show that the pelvis actually contributes to the increase in jumping force and absorption of landing impact, both of which findings can be used to improve(More)
This paper describes the development of a new shank mechanism and mimicking the human-like walking in the horizontal and frontal plane. One of human walking characteristics is that the COM (Center Of Mass) motion in the lateral direction is as small as 30 mm. We assume that it is thanks to the human walking characteristics in the horizontal plane that the(More)