Tatjana Wedig

Learn More
Eukaryotic cells contain three cytoskeletal filament systems that exhibit very distinct assembly properties, supramolecular architectures, dynamic behaviour and mechanical properties. Microtubules and microfilaments are relatively stiff polar structures whose assembly is modulated by the state of hydrolysis of the bound nucleotide. In contrast, intermediate(More)
Vimentin intermediate filaments (VIF) extend throughout the rear and perinuclear regions of migrating fibroblasts, but only nonfilamentous vimentin particles are present in lamellipodial regions. In contrast, VIF networks extend to the entire cell periphery in serum-starved or nonmotile fibroblasts. Upon serum addition or activation of Rac1, VIF are rapidly(More)
Intermediate filaments (IFs) are key components of the cytoskeleton in higher eukaryotic cells. The elementary IF 'building block' is an elongated coiled-coil dimer consisting of four consecutive alpha-helical segments. The segments 1A and 2B include highly conserved sequences and are critically involved in IF assembly. Based on the crystal structures of(More)
Morphologically, glutaraldehyde-fixed and -dried intermediate filaments (IFs) appear flexible, and with a width of 8-12 nm when observed by electron microscopy. Sometimes, the filaments are even unraveled on the carbon-coated grid and reveal a protofilamentous architecture. In this study, we have used atomic force microscopy to further investigate the(More)
We have developed an assembly protocol for the intermediate filament (IF) protein vimentin based on a phosphate buffer system, which enables the dynamic formation of authentic IFs. The advantage of this physiological buffer is that analysis of the subunit interactions by chemical cross-linking of internal lysine residues becomes feasible. By this system, we(More)
Cataracts are characterized by an opacification of the eye lens, often caused by protein misfolding and aggregation. The intermediate filament protein vimentin, which is highly expressed in lens fiber cells and in mesenchymal tissues, is a main structural determinant in these cells forming a membrane-connected cytoskeleton. Additional functions of vimentin(More)
Vimentin polymerizes via complex lateral interactions of coiled-coil dimers into long, flexible filaments referred to as intermediate filaments (IFs). Intermediate in diameter between microtubules and microfilaments, IFs constitute the third cytoskeletal filament system of metazoan cells. Here we investigated the molecular basis of the 3-D architecture of(More)
We have investigated the co-assembly properties of the intermediate filament (IF) proteins vimentin and desmin. First, the soluble complexes formed by both proteins separately in 5 mM Tris-HCl, pH 8.4, were characterized by analytical ultracentrifugation. In both cases, s-values of around 5 S were obtained corresponding to the formation of tetramers.(More)
The intermediate filaments (IFs) form major structural elements of the cytoskeleton. In vitro analyses of these fibrous proteins reveal very different assembly properties for the nuclear and cytoplasmic IF proteins. However, keratins in particular, the largest and most heterogenous group of cytoplasmic IF proteins, have been difficult to analyze due to(More)
Withaferin A (WFA) is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of(More)