Tatjana Skrbic

Learn More
Stochastic simulations of coarse-grained protein models are used to investigate the propensity to form knots in early stages of protein folding. The study is carried out comparatively for two homologous carbamoyltransferases, a natively-knotted N-acetylornithine carbamoyltransferase (AOTCase) and an unknotted ornithine carbamoyltransferase (OTCase). In(More)
The lipid patterns of plasma, red blood cells, and leucocytes from normal controls and from patients with multiple sclerosis and motor neurone disease have been studied by thin-layer chromatography. The fatty acid composition of cholesterol esters and lecithin in plasma from normal subjects and from patients with multiple sclerosis are reported. The fatty(More)
We investigate the folding mechanism of the WW domain Fip35 using a realistic atomistic force field by applying the Dominant Reaction Pathways approach. We find evidence for the existence of two folding pathways, which differ by the order of formation of the two hairpins. This result is consistent with the analysis of the experimental data on the folding(More)
We report on atomistic simulation of the folding of a natively-knotted protein, MJ0366, based on a realistic force field. To the best of our knowledge this is the first reported effort where a realistic force field is used to investigate the folding pathways of a protein with complex native topology. By using the dominant-reaction pathway scheme we(More)
Euplotes nobilii and Euplotes raikovi are phylogenetically closely allied species of marine ciliates, living in polar and temperate waters, respectively. Their evolutional relation and the sharply different temperatures of their natural environments make them ideal organisms to investigate thermal-adaptation. We perform a comparative study of the thermal(More)
We use a micro-canonical Wang-Landau technique to study the equilibrium properties of a single flexible homopolymer where consecutive monomers are represented by impenetrable hard spherical beads tangential to each other, and non-consecutive monomers interact via a square-well potential. To mimic the characteristics of a protein-like system, the model is(More)
We use Wang-Landau and replica exchange techniques to study the effect of an increasing stiffness on the formation of secondary structures in protein-like systems. Two possible models are considered. In both models, a polymer chain is formed by tethered beads where non-consecutive backbone beads attract each other via a square-well potential representing(More)
Chick embryo extract is widely used to induce differentiation in cultures of muscle and other tissues. As part of a systematic study of factors which promote maximal differentiation of muscle cells, we found that unmodified chick embryo extract could be quite toxic to cells. This report describes the effects of varying culture media composition and cell(More)