Learn More
A key property in the definition of logic programming languages is the completeness of goal-directed proofs. This concept originated in the study of logic programming languages for intuitionistic logic in the (single-conclusioned) sequent calculus LJ, but has subsequently been adapted to multiple-conclusioned systems such as those for linear logic. Given(More)
Many important results in proof theory for sequent calculus (cut-elimination, completeness and other properties of search strategies, etc) are proved using permutations of sequent rules. The focus of this paper is on the development of systematic and automated-oriented techniques for the analysis of permutability in some sequent calculi. A representation of(More)
A key property in the definition of logic programming languages is the completeness of goal-directed proofs. This concept originated in the study of logic programming languages for intuitionistic logic in the (single-conclusioned) sequent calculus LJ, but has subsequently been adapted to multiple-conclusioned systems such as those for linear logic. Given(More)