Learn More
Enamel, the hardest vertebrate tissue, covers the teeth of almost all sarcopterygians (lobe-finned bony fishes and tetrapods) as well as the scales and dermal bones of many fossil lobe-fins. Enamel deposition requires an organic matrix containing the unique enamel matrix proteins (EMPs) amelogenin (AMEL), enamelin (ENAM) and ameloblastin (AMBN).(More)
The G-protein-coupled melanocortin receptors (MCRs) play an important role in a variety of essential functions such as the regulation of pigmentation, energy homeostasis, and steroid production. We performed a comprehensive characterization of the MC system in Fugu (Takifugu rubripes). We show that Fugu has an AGRP gene with high degree of conservation in(More)
Food restriction is associated with a number of endocrine disturbances. We validated the experimental conditions for several house-keeping genes and determined the effects of 12 day 50% food restriction on hypothalamic and pituitary transcription of genes involved in different neuroendocrine systems, using real-time quantitative polymerase chain reaction(More)
The cloning of melanocortin (MC) receptors in distant species has provided us tools to get insight in how the ligand-receptors interactions in the MC system have evolved. We have however lacked studies on pharmacology of native ancient melanocortin peptides at the ancient MC receptors. In this paper we synthesized melanocortin peptides from both the sea(More)
We report the cloning and characterization of two melanocortin receptors (MCRs) from the spiny dogfish (Squalus acanthias) (Sac). Phylogenetic analysis shows that these shark receptors are orthologues of the MC3R and MC5R subtypes, sharing 65% and 70% overall amino acid identity with the human counterparts, respectively. The SacMC3R was expressed and(More)
We have cloned melanocortin receptors (MCRs) from several species of fish. The MC4R and MC5R subtypes arose early in vertebrate evolution and their primary structure is remarkably conserved. Expression and pharmacological characterization of the MCRs in fish has revealed that they bind and respond to melanocortin peptides with high potency. Detailed(More)
Members of the solute carrier family 25 (SLC25) are known to transport molecules over the mitochondrial membrane. In this paper we present 14 novel members of SLC25 family in human. These were provided with following gene symbols by the HGNC: SLC25A32, SLC25A33, SLC25A34, SLC25A35, SLC25A37, SLC25A38, SLC25A39, SLC25A40, SLC25A41, SLC25A42, SLC25A43,(More)
The rainbow trout (Oncorhynchus mykiss) is one of the most widely used fish species in aquaculture and physiological research. In the present paper, we report the first cloning, 3D (three-dimensional) modelling, pharmacological characterization and tissue distribution of two melanocortin (MC) receptors in rainbow trout. Phylogenetic analysis indicates that(More)
One of the most successful chromatic adaptations in vertebrates is the dorsal-ventral pigment pattern in which the dorsal skin is darkly colored, whereas the ventrum is light. In fish, the latter pattern is achieved because a melanization inhibition factor inhibits melanoblast differentiation and supports iridophore proliferation in the ventrum. In rodents,(More)
1 Melanocortin (MC) receptors are widely distributed throughout the body of chicken, like in mammals, and participate in a wide range of physiological functions. 2 To clarify the pharmacological impact of ligands acting in the MC system, we expressed the chicken MC1, MC2, MC3, MC4 and MC5 (cMC1-5) receptors in eukaryotic cells and performed comprehensive(More)