Tatjana Eitrich

Learn More
In this paper, we study the classifications of unbalanced data sets of drugs. As an example we chose a data set of 2D6 inhibitors of cytochrome P450. The human cytochrome P450 2D6 isoform plays a key role in the metabolism of many drugs in the preclinical drug discovery process. We have collected a data set from annotated public data and calculated(More)
We consider the problem of selecting and tuning learning parameters of support vector machines, especially for the classification of large and unbalanced data sets. We show why and how simple models with few parameters should be refined and propose an automated approach for tuning the increased number of parameters in the extended model. Based on a(More)
In this paper we describe a new hybrid distributed/shared memory parallel software for support vector machine learning on large data sets. The support vector machine (SVM) method is a well-known and reliable machine learning technique for classification and regression tasks. Based on a recently developed shared memory decomposition algorithm for support(More)
The support vector machine (SVM) is a well-established and accurate supervised learning method for the classification of data in various application fields. The statistical learning task – the so-called training – can be formulated as a quadratic optimization problem. During the last years the decomposition algorithm for solving this optimization problem(More)
  • 1