Tatiani Bellettini-Santos

Learn More
Aging is a normal physiological process accompanied by cognitive decline. This aging process has been the primary risk factor for development of aging-related diseases such as Alzheimer's disease (AD). Cognitive deficit is related to alterations of neurotrophic factors level such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and(More)
Alzheimer's disease (AD) is a neurodegenerative disorder where the main risk factor is age, since its incidence increases dramatically after the age of 60. It is the most common form of dementia, and is accompanied by memory loss and cognitive impairment. Although AD was discovered over a century ago, the only drugs approved by the US Food and Drug(More)
Sepsis is a complication of an infection which imbalance the normal regulation of several organ systems, including the central nervous system (CNS). Evidence points towards inflammation and oxidative stress as major steps associated with brain dysfunction in sepsis. Thus, we investigated the α-lipoic acid (ALA) effect as an important antioxidant compound on(More)
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common type of age-related dementia. Cognitive decline, beta-amyloid (Aβ) accumulation, neurofibrillary tangles, and neuroinflammation are the main pathophysiological characteristics of AD. Minocycline is a tetracycline derivative with anti-inflammatory properties that has a(More)
D-Galactose (D-gal) chronic administration via intraperitoneal and subcutaneous routes has been used as a model of aging and Alzheimer disease in rodents. Intraperitoneal and subcutaneous administration of D-gal causes memory impairments, a reduction in the neurogenesis of adult mice, an increase in the levels of the amyloid precursor protein and oxidative(More)
d-Galactose (d-gal) is a reducing sugar that can be used to mimic the characteristics of aging in rodents; however, the effects of d-gal administration by oral route are not clear. Therefore, the aim of this study was to elucidate if the oral administration of d-gal induces cognitive impairments, neuronal loss, and oxidative damage, mimicking an animal(More)
  • 1