Tatiana I. Netzeva

Learn More
This is the 52nd report of a series of workshops organised by the European Centre for the Validation of Alternative Methods (ECVAM). The main objective of ECVAM, as defined in 1993 by its Scientific Advisory Committee, is to promote the scientific and regulatory acceptance of alternative methods which are of importance to the biosciences, and that reduce,(More)
Quantitative structure-activity relationships (QSARs) for the toxicity of 200 phenols to the ciliated protozoan Tetrahymena pyriformis, and the validation of the QSARs using a test set of a further 50 compounds, are reported. The phenols are structurally heterogeneous and represent a variety of mechanisms of toxic action including polar narcosis, weak acid(More)
A mechanistically based quantitative structure-activity relationship (QSAR) for the uncoupling activity of weak organic acids has been derived. The analysis of earlier experimental studies suggested that the limiting step in the uncoupling process is the rate with which anions can cross the membrane and that this rate is determined by the height of the(More)
Different regulatory schemes worldwide, and in particular, the preparation for the new REACH (Registration, Evaluation and Authorization of CHemicals) legislation in Europe, increase the reliance on estimation methods for predicting potential chemical hazard. To meet the increased expectations, the availability of valid (Q)SARs becomes a critical issue,(More)
Toxicity data for 82 aliphatic chemicals with an alpha,beta-unsaturated substructure were compiled. Toxicity was assessed in the 2-day Tetrahymena pyriformis population growth impairment assay. Toxic potency [log(IGC50(-1))] for most of these chemicals was in excess of baseline narcosis as quantified by the 1-octanol/water partition coefficient (log K(ow)).(More)
In the present study, a quantitative structure--activity relationship (QSAR) model has been developed for predicting acute toxicity to the fathead minnow (Pimephales promelas), the aim being to demonstrate how statistical validation and domain definition are both required to establish model validity and to provide reliable predictions. A dataset of 408(More)
Validation of a quantitative structure-activity relationship (QSAR) is now considered as an integral part of its development. Assessment of the quality of a QSAR and the confidence that may be placed in predictions from it are vital to any validation procedure. A number of terms associated with the quality of a QSAR, confidence in that QSAR, or both may be(More)
The quality of quantitative structure-activity relationship (QSAR) models depends on the quality of their constitutive elements including the biological activity, statistical procedure applied, and the physicochemical and structural descriptors. The aim of this study was to assess the comparative use of ab initio and semiempirical quantum chemical(More)
The aim of this investigation was to develop a strategy for the formulation of a valid ecotoxicological-based QSAR while, at the same time, minimizing the required number of toxicological data points. Two chemical selection approaches-distance-based optimality and K Nearest Neighbor (KNN), were used to examine the impact of the number of compounds used in(More)
An approach for predicting acute aquatic toxicity, in the form of a quantitative structure-activity-activity relationship (QSAAR), is described. This study assessed relative toxic effects to a fish, Pimephales promelas, and a ciliate, Tetrahymena pyriformis, and attempted to form relationships between them. A good agreement between toxic potencies (R2 =(More)