Tarun K Khurana

Learn More
We present a theoretical and experimental study of analyte preconcentration via peak mode isotachophoresis (ITP). We perform perturbation analysis of the governing equations that includes electromigration, diffusion, buffer reactions, and nonlinear ionic strength effects. This analysis relaxes the inherent numerical stiffness and achieves a fast solution to(More)
We present a method to achieve separation and indirect detection of nonfluorescent species using fluorescent mobility markers. This technique leverages isotachophoresis (ITP) for both preconcentration and separation. We employ a leading electrolyte (LE), trailing electrolyte (TE), and a set of fluorescent markers of mobilities designed to bound those of(More)
We present a method that achieves simultaneous preconcentration and separation of analytes using peak-mode isotachophoresis with a single step injection in simple, off-the-shelf microchannels or capillaries. We leverage ions resulting from dissolved atmospheric carbon dioxide to weakly disrupt isotachophoretic preconcentration and induce separation of(More)
The increasing complexity of modern integrated circuits and need for high-heat flux removal with low junction temperatures motivates research in a wide variety of cooling and refrigeration technologies. Two-phase liquid cooling is especially attractive due to high efficiency and low thermal resistances. While two-phase microfluidic cooling offers important(More)
  • 1