Learn More
Orexin neurons are exclusively localized in the lateral hypothalamic area and project their fibers to the entire central nervous system, including the histaminergic tuberomammillary nucleus (TMN). Dysfunction of the orexin system results in the sleep disorder narcolepsy, but the role of orexin in physiological sleep-wake regulation and the mechanisms(More)
Considerable evidence indicates that adenosine may be an endogenous somnogen, yet the mechanism through which it promotes sleep is unknown. Adenosine may act via A1 receptors to promote sleep, but an A2a receptor antagonist can block the sleep induced by prostaglandin D(2). We previously reported that prostaglandin D(2) activates sleep-promoting neurons of(More)
Orexin-producing neurons are clearly essential for the regulation of wakefulness and sleep because loss of these cells produces narcolepsy. However, little is understood about how these neurons dynamically interact with other wake- and sleep-regulatory nuclei to control behavioral states. Using survival analysis of wake bouts in wild-type and orexin(More)
Using an in vivo intracerebral microdialysis method coupled with an HPLC-fluorometric method, we investigated the extracellular level of endogenous histamine in the anterior hypothalamic area of urethane-anaesthetized rats. The basal rate of release of endogenous histamine in the anterior hypothalamic area measured by this method was 0.09 +/- 0.01 pmol/20(More)
We investigated the brain penetration of the histamine H3 receptor antagonists thioperamide and clobenpropit using ex vivo [125I]iodophenpropit binding. Homogenates of the rat cortex, striatum and mouse whole brain were prepared 1 h after subcutaneous injection of the H3 antagonists and incubated with [125I]iodophenpropit, a radiolabeled H3 receptor(More)
The orexin neurones play an essential role in driving arousal and in maintaining normal wakefulness. Lack of orexin neurotransmission produces a chronic state of hypoarousal characterized by excessive sleepiness, frequent transitions between wake and sleep, and episodes of cataplexy. A growing body of research now suggests that the basal forebrain (BF) may(More)
Using an in vivo microdialysis technique coupled with HPLC-fluorometry, the release of neuronal histamine from the anterior hypothalamic area was monitored continuously in conscious, freely moving rats under a 12:12 h light:dark cycle. Spontaneous locomotor activity of the rats was measured simultaneously using a locomotor activity counter. Histamine(More)
In order to elucidate the modulatory role of the histaminergic neural system in the cholinergic neural system, the acetylcholine release from the CA1-CA3 region in the hippocampus of anesthetized rats was studied by an in vivo microdialysis method coupled with HPLC-electrochemical detection. The mean value for the basal acetylcholine release was 0.98 +/-(More)
1. The effects of electrical stimulation to the round window of the inner ear and caloric vestibular stimulation on the in vivo release of acetylcholine (ACh) from rat hippocampus were investigated, using brain microdialysis coupled with high performance liquid chromatography-electrochemical detection. 2. Hippocampal ACh release was increased to 152% of the(More)
Infusion of prostaglandin (PG) D(2) into the lateral ventricle of the brain induced an increase in the amount of non-rapid eye movement sleep in wild-type (WT) mice but not in mice deficient in the PGD receptor (DP). Immunofluorescence staining of WT mouse brain revealed that DP immunoreactivity was dominantly localized in the leptomeninges (LM) of the(More)