Learn More
1. Dispersal ability can influence the importance of dispersal relative to other processes organizing metacommunities, such as species sorting among habitats along environmental gradients. 2. We compare plants with different dispersal modes and habitat affinities, evaluating the roles of environmental and spatial controls on plant community composition in(More)
The timing and strength of wind-driven coastal upwelling along the eastern margins of major ocean basins regulate the productivity of critical fisheries and marine ecosystems by bringing deep and nutrient-rich waters to the sunlit surface, where photosynthesis can occur. How coastal upwelling regimes might change in a warming climate is therefore a question(More)
Synchrony has fundamental but conflicting implications for the persistence and stability of food webs at local and regional scales. In a constant environment, compensatory dynamics between species can maintain food web stability, but factors that synchronize population fluctuations within and between communities are expected to be destabilizing. We studied(More)
Determining the relative importance of local and regional processes for the distribution of population abundance is a fundamental but contentious issue in ecology. In marine systems, classical theory holds that the influence of demographic processes and dispersal is confined to local populations whereas the environment controls regional patterns of(More)
In marine systems, the occurrence and implications of disturbance-recovery cycles have been revealed at the landscape level, but only in demographically open or closed systems where landscape-level dynamics are assumed to have no feedback effect on regional dynamics. We present a mussel metapopulation model to elucidate the role of landscape-level(More)
The proliferation of efficient fishing practices has promoted the depletion of commercial stocks around the world and caused significant collateral damage to marine habitats. Recent empirical studies have shown that marine reserves can play an important role in reversing these effects. Equilibrium metapopulation models predict that networks of marine(More)
Ecological systems show tremendous variability across temporal and spatial scales. It is this variability that ecologists try to predict and that managers attempt to harness in order to mitigate risk. However, the foundations of ecological science and its mainstream agenda focus on equilibrium dynamics to describe the balance of nature. Despite a rich body(More)
Although there is a substantial body of work on how temperature shapes coastal marine ecosystems, the spatiotemporal variability of seawater pH and corresponding in situ biological responses remain largely unknown across biogeographic ranges of tropical coral species. Environmental variability is important to characterize because it can amplify or dampen(More)
The persistence of mutualisms in host-microbial - or holobiont - systems is difficult to explain because microbial mutualists, who bear the costs of providing benefits to their host, are always prone to being competitively displaced by non-mutualist 'cheater' species. This disruptive effect of competition is expected to be particularly strong when the(More)
Latitudinal gradients in ecosystem patterns arise from complex interactions between biotic and abiotic forces operating at a range of spatial and temporal scales. Widespread invasive species, particularly invasive ecosystem engineers with large effects on their environment, may alter these gradients. We sampled 3–5 stands of the invasive common reed,(More)