Learn More
Several high-performance computers now use field-programmable gate arrays as reconfigurable coprocessors. The authors describe the two major contemporary HPRC architectures and explore the pros and cons of each using representative applications from remote sensing, molecular dynamics, bioinformatics, and cryptanalysis.
—Montgomery modular multiplication is one of the fundamental operations used in cryptographic algorithms, such as RSA and Elliptic Curve Cryptosystems. At CHES 1999, Tenca and Koç proposed the Multiple-Word Radix-2 Montgomery Multiplication (MWR2MM) algorithm and introduced a now-classic architecture for implementing Montgomery multiplication in hardware.(More)
Genetic algorithms (GAs) are known to be robust for search and optimization problems. Image registration can take advantage of the robustness of GAs in finding best transformation between two images, of the same location with slightly different orientation, produced by moving spaceborne remote sensing instruments. In this paper, we present 2-phase(More)
UPC, or Unified Parallel C, is a parallel extension of ANSI C. UPC follows a distributed shared memory programming model aimed at leveraging the ease of programming of the shared memory paradigm, while enabling the exploitation of data locality. UPC incorporates constructs that allow placing data near the threads that manipulate them to minimize remote(More)
Graphics processing units (GPUs) have been accepted as a powerful and viable coprocessor solution in high-performance computing domain. In order to maximize the benefit of GPUs for a multicore platform, a mechanism is needed for CPU threads in a parallel application to share this computing resource for efficient execution. NVIDIA's Fermi architecture(More)
Reconfigurable computers (RC) can provide significant performance improvement for domain applications. However, wide acceptance of todaypsilas RCs among domain scientist is hindered by the complexity of design tools and the required hardware design experience. Recent developments in hardware/software co-design methodologies for these systems provide the(More)
Summary form only given. Parallel programming paradigms, over the past decade, have focused on how to harness the computational power of contemporary parallel machines. Ease of use and code development productivity, has been a secondary goal. Recently, however, there has been a growing interest in understanding the code development productivity issues and(More)