Tarak Nath Mandal

Learn More
Chemically tuned inorganic-organic hybrid materials, based on CH3NH3(═MA)Pb(I(1-x)Br(x))3 perovskites, have been studied using UV-vis absorption and X-ray diffraction patterns and applied to nanostructured solar cells. The band gap engineering brought about by the chemical management of MAPb(I(1-x)Br(x))3 perovskites can be controllably tuned to cover(More)
The photovoltaic performance of Sb2 Se3 -sensitized heterojunction solar cells, which were fabricated by a simple deposition of Sb2 Se3 on mesoporous TiO2 by an approach that features multiple cycles of spin coating with a single-source precursor solution and thermal decomposition, is reported.(More)
Crosstalk minimization is one of the most important high performance aspects in interconnecting VLSI circuits. With advancement of fabrication technology, devices and interconnecting wires are placed in closer proximity and circuits operate at higher frequencies. This results in crosstalk between wire segments. Crosstalk minimization problem for the(More)
The ditopic ligand PyPzOAPz (N-[(Z)-amino(pyrazin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) was synthesized by in situ condensation of methyl imino pyrazine-2-carboxylate with 5-methyl-1-(2-pyridyl) pyrazole-3-carbohydrazide. In this work we have also used two of our earlier ligands PzCAP(More)
The main objective of VLSI channel routing problem is to compute a feasible reduced area routing solution which reduces the height of the channel. A channel is a rectangular routing region with two open ends (left and right) and two sets of fixed terminals (top terminals and bottom terminals) are placed in the upper and lower sides of the channel. A net is(More)
The ditopic ligand PyPzOAP (N-[(Z)-amino(pyridin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) and the polytopic ligand 2-PzCAP (N'(3),N'(5)-bis[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3,5-dicarbohydrazide) were synthesized in situ by condensation of methyl imino picolinate with 5-methyl-1-(2-pyridyl)(More)
The pyrazole derived Schiff base polytopic ligand 5-methyl-N'-[1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazide (PzCAP), prepared by the reaction between 5-methylpyrazole-3-carbohydrazide and 2-acetyl pyridine, has two potentially bridging functional groups [mu-O and mu-(N-N)] and consequently can exhibit different coordination conformations. Two(More)
—With advancements in VLSI fabrication technology, interconnecting wires are being placed in closer proximity while circuits are starting to operate at higher frequencies. Thus, reduction in crosstalk between interconnects becomes an important consideration for VLSI physical design. In this paper, we have reviewed the effects and impact that crosstalk has(More)
Minimization of total (vertical) wire length is one of the most important problems in laying out blocks in VLSI physical design. Minimization of wire length not only reduces the cost of physical wiring required, but also reduces the electrical hazards of having long wires in the interconnection, power consumption, and signal propagation delays. Since the(More)
A pyrazole based ditopic ligand (PzOAP), prepared by the reaction between 5-methylpyrazole-3-carbohydrazide and methyl ester of imino picolinic acid, reacts with Cu(NO3)2.6H2O to form a self-assembled, ferromagnetically coupled, alkoxide bridged tetranuclear homoleptic Cu(II) square grid-complex [Cu4(PzOAP)4(NO3)2] (NO3)2.4H2O (1) with a central(More)
  • 1