Tara Leah Huber

Learn More
In vertebrates, hematopoietic and vascular progenitors develop from ventral mesoderm. The first primitive wave of hematopoiesis yields embryonic red blood cells, whereas progenitor cells of subsequent definitive waves form all hematopoietic cell lineages. In this report we examine the development of hematopoietic and vasculogenic cells in normal zebrafish(More)
Cell-tracing studies in the mouse indicate that the cardiac lineage arises from a population that expresses the vascular endothelial growth factor receptor 2 (VEGFR2, Flk-1), suggesting that it may develop from a progenitor with vascular potential. Using the embryonic stem (ES) cell differentiation model, we have identified a cardiovascular progenitor based(More)
The establishment of the primitive streak and its derivative germ layers, mesoderm and endoderm, are prerequisite steps in the formation of many tissues. To model these developmental stages in vitro, an ES cell line was established that expresses CD4 from the foxa2 locus in addition to GFP from the brachyury locus. A GFP-Bry(+) population expressing(More)
Haematopoietic and vascular cells are thought to arise from a common progenitor called the haemangioblast. Support for this concept has been provided by embryonic stem (ES) cell differentiation studies that identified the blast colony-forming cell (BL-CFC), a progenitor with both haematopoietic and vascular potential. Using conditions that support the(More)
We have developed a technique, fast retrieval of gel shift activities (FROGS), that allows for the rapid isolation of proteins that interact with DNA. Using this technique, we have isolated two proteins that are structurally similar to Mix.1, a PAX class homeodomain protein with ventralizing activity in Xenopus. The Mix family of proteins are expressed(More)
During embryonic development, the establishment of the primitive erythroid lineage in the yolk sac is a temporally and spatially restricted program that defines the onset of hematopoiesis. In this report, we have used the embryonic stem cell differentiation system to investigate the regulation of primitive erythroid development at the level of the(More)
Embryonic stem (ES) cells have the potential to develop into all cell types of the adult body. This capability provides the basis for considering the ES cell system as a novel and unlimited source of cells for replacement therapies for the treatment of a wide range of diseases. Before the cell-based therapy potential of ES cells can be realized, a better(More)
Hematopoietic induction occurs on the ventral side of Xenopus gastrulae and is thought to be triggered by the growth factor bone morphogenetic protein 4 (BMP-4). To characterize this process, we developed a quantitative and sensitive assay for the induction of erythroid cells from totipotent ectoderm of the embryo. When high doses of BMP-4 were used in this(More)
Hematopoietic stem cells are derived from ventral mesoderm during vertebrate development. Gene targeting experiments in the mouse have demonstrated key roles for the basic helix-loop-helix transcription factor SCL and the GATA-binding protein GATA-1 in hematopoiesis. When overexpressed in Xenopus animal cap explants, SCL and GATA-1 are each capable of(More)
The specification of the erythroid lineage from hematopoietic stem cells requires the expression and activity of lineage-specific transcription factors. One transcription factor family that has several members involved in hematopoiesis is the Krüppel-like factor (KLF) family [1]. For example, erythroid KLF (EKLF) regulates beta-globin expression during(More)