Learn More
Regions of gain and loss of genomic DNA occur in many cancers and can drive the genesis and progression of disease. These copy number aberrations (CNAs) can be detected at high resolution by using microarray-based techniques. However, robust statistical approaches are needed to identify nonrandom gains and losses across multiple experiments/samples. We have(More)
Mutations in BRCA1 and BRCA2 account for a significant proportion of hereditary breast cancers. Earlier studies have shown that inherited and sporadic tumors progress along different somatic genetic pathways and that global gene expression profiles distinguish between these groups. To determine whether genomic profiles similarly discriminate among BRCA1,(More)
SUMMARY This synopsis provides an overview of array-based comparative genomic hybridization data display, abstraction and analysis using CGHAnalyzer, a software suite, designed specifically for this purpose. CGHAnalyzer can be used to simultaneously load copy number data from multiple platforms, query and describe large, heterogeneous datasets and export(More)
INTRODUCTION Genomic aberrations in the form of subchromosomal DNA copy number changes are a hallmark of epithelial cancers, including breast cancer. The goal of the present study was to analyze such aberrations in breast cancer at high resolution. METHODS We employed high-resolution array comparative genomic hybridization with 4,134 bacterial artificial(More)
The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) correlates with poor prognosis. The ABC subtype of DLBCL is associated with constitutive activation of the NF-κB pathway, and oncogenic lesions have been identified in its regulators, including CARD11/CARMA1 (caspase recruitment domain-containing protein 11), A20/TNFAIP3, and(More)
PURPOSE Familial breast cancer represents 5% to 10% of all breast tumors. Mutations in the two known major breast cancer susceptibility genes, BRCA1 and BRCA2, account for a minority of familial breast cancer, whereas families without mutations in these genes (BRCAX group) account for 70% of familial breast cancer cases. EXPERIMENTAL DESIGN To better(More)
  • 1