Learn More
Processing oil sands to extract bitumen produces large volumes of a tailings slurry comprising water, silt, clays, unrecovered bitumen, and residual solvent used in the extraction process. Tailings are deposited into large settling basins, where the solids settle by gravity to become denser mature fine tailings (MFT). A substantial flux of methane,(More)
Extraction of bitumen from mined oil sands ores produces enormous volumes of tailings that are stored in settling basins (current inventory ≥ 840 million m(3)). Our previous studies revealed that certain hydrocarbons (short-chain n-alkanes [C(6)-C(10)] and monoaromatics [toluene, o-xylene, m-xylene]) in residual naphtha entrained in the tailings are(More)
Microbial metabolism of residual hydrocarbons, primarily short-chain n-alkanes and certain monoaromatic hydrocarbons, in oil sands tailings ponds produces large volumes of CH(4) in situ. We characterized the microbial communities involved in methanogenic biodegradation of whole naphtha (a bitumen extraction solvent) and its short-chain n-alkane (C(6)-C(10))(More)
Microorganisms in oil sands fluid fine tailings (FFT) are critical to biogeochemical elemental cycling as well as to the degradation of residual hydrocarbon constituents and subsequent methane and CO2 production. Microbial activity enhances particulate matter sedimentation rates and the dewatering of FFT materials, allowing water to be recycled back into(More)
We investigated methanotrophic bacteria in slightly alkaline surface water (pH 7.4-8.7) of oilsands tailings ponds in Fort McMurray, Canada. These large lakes (up to 10 km(2)) contain water, silt, clay and residual hydrocarbons that are not recovered in oilsands mining. They are primarily anoxic and produce methane but have an aerobic surface layer. Aerobic(More)
  • 1