Tapas Nayak

Learn More
The goal of this study was to employ nano-graphene for tumor targeting in an animal tumor model, and quantitatively evaluate the pharmacokinetics and tumor targeting efficacy through positron emission tomography (PET) imaging using (66)Ga as the radiolabel. Nano-graphene oxide (GO) sheets with covalently linked, amino group-terminated six-arm branched(More)
Graphene, with its excellent physical, chemical, and mechanical properties, holds tremendous potential for a wide variety of biomedical applications. As research on graphene-based nanomaterials is still at a nascent stage due to the short time span since its initial report in 2004, a focused review on this topic is timely and necessary. In this feature(More)
Herein we demonstrate that nanographene can be specifically directed to the tumor neovasculature in vivo through targeting of CD105 (i.e., endoglin), a vascular marker for tumor angiogenesis. The covalently functionalized nanographene oxide (GO) exhibited excellent stability and target specificity. Pharmacokinetics and tumor targeting efficacy of the GO(More)
Current tissue engineering approaches combine different scaffold materials with living cells to provide biological substitutes that can repair and eventually improve tissue functions. Both natural and synthetic materials have been fabricated for transplantation of stem cells and their specific differentiation into muscles, bones, and cartilages. One of the(More)
Graphene-based nanomaterials have attracted tremendous attention in the field of biomedicine due to their intriguing properties. Herein, we report tumor vasculature targeting and imaging in living mice using reduced graphene oxide (RGO), which was conjugated to the anti-CD105 antibody TRC105. The RGO conjugate, (64)Cu-NOTA-RGO-TRC105, exhibited excellent(More)
In the field of regenerative medicine, human mesenchymal stem cells envisage extremely promising applications, due to their ability to differentiate into a wide range of connective tissue species on the basis of the substrate on which they grow. For the first time ever reported, we investigated the effects of a thin film of pegylated multiwalled carbon(More)
UNLABELLED Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types. The goal of this study was to develop a PET tracer for imaging of TF expression in pancreatic cancer. METHODS ALT-836, a chimeric antihuman TF monoclonal antibody, was conjugated to(More)
PURPOSE The goal of this study was to generate and characterize the Fab fragment of TRC105, a monoclonal antibody that binds with high affinity to human and murine CD105 (i.e., endoglin), and investigate its potential for PET imaging of tumor angiogenesis in a small-animal model after (61/64)Cu labeling. METHODS TRC105-Fab was generated by enzymatic(More)
The objective of this study was to characterize the in vitro and in vivo properties of the F(ab')(2) fragment of TRC105, a human/murine chimeric IgG1 monoclonal antibody that binds with high avidity to human and murine CD105 (i.e., endoglin), and investigate its potential for positron emission tomography (PET) imaging of tumor angiogenesis after(More)
The goal of this study was to develop a molecular imaging agent that can allow for both positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging of CD105 expression in metastatic breast cancer. TRC105, a chimeric anti-CD105 monoclonal antibody, was labeled with both a NIRF dye (i.e., IRDye 800CW) and 64Cu to yield(More)