Learn More
Cellulose is the major polysaccharide of plants where it plays a predominantly structural role. A variety of highly specialized microorganisms have evolved to produce enzymes that either synergistically or in complexes can carry out the complete hydrolysis of cellulose. The structure of the major cellobiohydrolase, CBHI, of the potent cellulolytic fungus(More)
Trichoderma reesei cellobiohydrolase Cel6A is an inverting glycosidase. Structural studies have established that the tunnel-shaped active site of Cel6A contains two aspartic acids, D221 and D175, that are close to the glycosidic oxygen of the scissile bond and at hydrogen-bonding distance from each other. Here, site-directed mutagenesis, X-ray(More)
Glycine betaine is a compatible solute, which is able to restore and maintain osmotic balance of living cells. It is synthesized and accumulated in response to abiotic stress. Betaine acts also as a methyl group donor and has a number of important applications including its use as a feed additive. The known biosynthetic pathways of betaine are universal and(More)
Cellobiohydrolase I (CBHI) of Trichoderma reesei has two functional domains, a catalytic core domain and a cellulose binding domain (CBD). The structure of the CBD reveals two distinct faces, one of which is flat and the other rough. Several other fungal cellulolytic enzymes have similar two-domain structures, in which the CBDs show a conserved primary(More)
Cellobiohydrolase I (CBH I), the major component of Trichoderma reesei cellulolytic system, is comprised of a catalytic core domain joined to a cellulose binding-domain (CBD) by an extended O-glycosylated interdomain linker peptide. Two internal deletions were introduced to the linker in order to investigate its function particularly in the hydrolysis of(More)
Cellulose is the most abundant polymer in the biosphere. Although generally resistant to degradation, it may be hydrolysed by cellulolytic organisms that have evolved a variety of structurally distinct enzymes, cellobiohydrolases and endoglucanases, for this purpose. Endoglucanase I (EG I) is the major endoglucanase produced by the cellulolytic fungus(More)
Glycine betaine is accumulated in cells living in high salt concentrations to balance the osmotic pressure. Glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase (SDMT) of Ectothiorhodospira halochloris catalyze the threefold methylation of glycine to betaine, with S-adenosylmethionine acting as the methyl group(More)
Melanocarpus albomyces steryl esterase STE1 is considered to be an interesting tool for several industrial applications due to its broad substrate specificity. STE1 was produced in the filamentous fungus Trichoderma reesei in a laboratory bioreactor at an estimated production level of 280 mg l(-l). The properties of the purified recombinant enzyme (rSTE1),(More)
The ste1 gene encoding a steryl esterase was isolated from the thermophilic fungus Melanocarpus albomyces. The gene has one intron, and it encodes a protein consisting of 576 amino acids. The deduced amino acid sequence of the steryl esterase was shown to be related to lipases and other esterases such as carboxylesterases. Formation of mature protein(More)
Triglycerides, steryl esters, resin acids, free fatty acids and sterols are lipophilic extractives of wood (commonly referred to as pitch or wood resin) and have a negative impact on paper machine runnability and quality of paper. Thus, enzymes capable of modifying these compounds would be potential tools for reducing pitch problems during paper(More)