Tapan Kumar Adhya

Learn More
In a study on CH4 emission from flooded rice fields under irrigated conditions, fields planted with rice emitted more methane than unplanted fields. The CH4 efflux in planted plots varied with the rice variety and growth stage and ranged from 4 to 26 mg h-1m-2. During the reproductive stage of the rice plants, CH4 emission was high and the oxidation power(More)
Experiments were conducted to determine methane emission from a rainfed lowland rice field (water depth about 3–30 cm) and an irrigated shallow rice field (4–6 cm), both planted to the same cultivar, cv. ‘Gayatri,’ as influenced by fertilizer management practices. Methane emission peaked from 100 to 125 days after transplanting followed by a decline in(More)
Methane (CH4) emission from rice fields at Cuttack (State of Orissa, eastern India) has been recorded using an automatic measurement system (closed chamber method) from 1995–1998. Experiments were laid out to test the impact of water regime, organic amendment, inorganic amendment and rice cultivars. Organic amendments in conjunction with chemical N (urea)(More)
The DNDC (DeNitrification and DeComposition) model was tested against experimental data on CH4 and N2O emissions from rice fields at different geographical locations in India. There was a good agreement between the simulated and observed values of CH4 and N2O emissions. The difference between observed and simulated CH4 emissions in all sites ranged from(More)
Green manures are widely used in rice production and may influence methane efflux (CH4). Influence of application of Azolla (A. caroliniana Wild.), a widely used biofertilizer for rice (Oryza sativa L.), on CH4 efflux from a flooded alluvial soil planted to rice, and select soil and plant variables were investigated in a field experiment at Cuttack, India.(More)
In a field study, potassium (K) applied as muriate of potash (MOP) significantly reduced methane (CH4) emission from a flooded alluvial soil planted to rice. Cumulative emission was highest in control plots (125.34 kg CH4 ha−1), while the lowest emission was recorded in field plots receiving 30 kg K ha−1 (63.81 kg CH4 ha−1), with a 49% reduction in CH4(More)
Bacteria possessing ACC deaminase activity reduce the level of stress ethylene conferring resistance and stimulating growth of plants under various biotic and abiotic stresses. The present study aims at isolating efficient ACC deaminase producing PGPR strains from the rhizosphere of rice plants grown in coastal saline soils and quantifying the effect of(More)
 Application of a commercial formulation of the herbicide butachlor (N-butoxymethyl-2-chloro-2′,6′-diethyl acetanilide) at 1 kg a.i. ha–1 to an alluvial soil planted with direct-seeded flooded rice (cv. Annada), significantly inhibited both crop-mediated emission and ebullition fluxes of methane (CH4). Over a cropping period of 110 days, the crop-mediated(More)
The DNDC (DeNitrification and DeComposition) model was calibrated and tested against experimental data on CH4 emission from rice fields of Central Rice Research Institute, Cuttack, India. There was good agreement between the simulated and observed values of grain yield, total biomass, N uptake and seasonal CH4 emission. Overall, the model satisfactorily(More)