Learn More
When a visual stimulus suddenly appears, it captures attention, producing a transient improvement of performance on basic visual tasks. We investigate the effect of transient attention on stimulus representations in early visual areas using rapid event-related fMRI. Participants discriminated the orientation of one of two gratings preceded or followed by a(More)
A network of fronto-parietal cortical areas is known to be involved in the control of visual attention, but the representational scope and specific function of these areas remains unclear. Recent neuroimaging evidence has revealed the existence of both transient (attention-shift) and sustained (attention-maintenance) mechanisms of space-based and(More)
Although both the object and the observer often move in natural environments, the effect of motion on visual object recognition ha not been well documented. The authors examined the effect of a reversal in the direction of rotation on both explicit and implicit memory for novel, 3-dimensional objects. Participants viewed a series of continuously rotating(More)
How does attention optimize our visual system for the task at hand? Two mechanisms have been proposed for how attention improves signal processing: gain and tuning. To distinguish between these two mechanisms we use the equivalent-noise paradigm, which measures performance as a function of external noise. In the present study we explored how spatial and(More)
Sequential sampling models provide a useful framework for understanding human decision making. A key component of these models is an evidence accumulation process in which information is accrued over time to a threshold, at which point a choice is made. Previous neurophysiological studies on perceptual decision making have suggested accumulation occurs only(More)
We investigated the time course of feature-based attention and compared it to the time course of spatial attention in an experiment with identical stimuli and task. Observers detected a speed increment in a compound motion stimulus preceded by cues that indicated either the target location or direction. The cue-target stimulus-onset-asynchrony (SOA) was(More)
Human visual performance is better below than above fixation along the vertical meridian-a phenomenon we refer to as vertical meridian asymmetry (VMA). Here, we used fMRI to investigate the neural correlates of the VMA. We presented stimuli of two possible sizes and spatial frequencies on the horizontal and vertical meridians and analyzed the fMRI data in(More)
Human can flexibly attend to a variety of stimulus dimensions, including spatial location and various features such as color and direction of motion. Although the locus of spatial attention has been hypothesized to be represented by priority maps encoded in several dorsal frontal and parietal areas, it is unknown how the brain represents attended features.(More)
Although considerable research has examined the storage limits of visual short-term memory (VSTM), little is known about the initial formation (i.e., the consolidation) of VSTM representations. A few previous studies have estimated the capacity of consolidation to be one item at a time. Here we used a sequential-simultaneous manipulation to reexamine the(More)
How does feature-based attention modulate neural responses? We used adaptation to quantify the effect of feature-based attention on orientation-selective responses in human visual cortex. Observers were adapted to two superimposed oblique gratings while attending to one grating only. We measured the magnitude of attention-induced orientation-selective(More)