Learn More
Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the(More)
Optic atrophy 1 (OPA1) is a dynamin-like GTPase located in the inner mitochondrial membrane and mutations in OPA1 are associated with autosomal dominant optic atrophy (DOA). OPA1 plays important roles in mitochondrial fusion, cristae remodeling and apoptosis. Our previous study showed that dOpa1 mutation caused elevated reactive oxygen species (ROS)(More)
Mutations in optic atrophy 1 (OPA1), a nuclear gene encoding a mitochondrial protein, is the most common cause for autosomal dominant optic atrophy (DOA). The condition is characterized by gradual loss of vision, color vision defects, and temporal optic pallor. To understand the molecular mechanism by which OPA1 mutations cause optic atrophy and to(More)
Autosomal dominant optic atrophy (DOA) is a retinal neuronal degenerative disease characterized by a progressive bilateral visual loss. We report on two affected members of a family with dominantly inherited neuropathy of both optic and auditory nerves expressed by impaired visual acuity, moderate pure tone hearing loss, and marked loss of speech(More)
Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in(More)
Optic Atrophy 1 (OPA1) is a ubiquitously expressed dynamin-like GTPase in the inner mitochondrial membrane. It plays important roles in mitochondrial fusion, apoptosis, reactive oxygen species (ROS) and ATP production. Mutations of OPA1 result in autosomal dominant optic atrophy (DOA). The molecular mechanisms by which link OPA1 mutations and DOA are not(More)
The loss of retinal ganglion cells (RGCs) is the primary pathological change for many retinal degenerative diseases. Although there is currently no effective treatment for this group of diseases, cell transplantation to replace lost RGCs holds great potential. However, for the development of cell replacement therapy, better understanding of the molecular(More)
BACKGROUND The T-box transcription factor TBX3 is necessary for early embryonic development and for the normal development of the mammary gland. Homozygous mutations, in mice, are embryonic lethal while heterozygous mutations result in perturbed mammary gland development. In humans, mutations that result in the haploinsufficiency of TBX3 causes Ulnar(More)
BACKGROUND Cleidocranial dysplasia (CCD) is a dominantly inherited disease characterized by hypoplastic or absent clavicles, large fontanels, dental dysplasia, and delayed skeletal development. The purpose of this study is to investigate the genetic basis of Chinese family with CCD. METHODS Here, a large Chinese family with CCD and hyperplastic nails was(More)
In this report, we investigated the molecular genetic mechanism underlying the deafness-associated mitochondrial tRNAHis 12201T>C mutation. The destabilization of a highly conserved base-pairing (5A-68U) by the m.12201T>C mutation alters structure and function of tRNAHis. Using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines(More)