Learn More
The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain(More)
Heme, a complex of iron and protoporphyrin IX (PPIX), senses and utilizes oxygen in nearly all living cells. It is an essential component of various hemoproteins, including those involved in oxygen transport and storage (hemoglobin, myoglobin), electron transfer, drug and steroid metabolism (cytochromes), and signal transduction (nitric oxide synthases,(More)
Heterotrimeric G proteins couple receptors for diverse extracellular signals to effector enzymes or ion channels. Each G protein comprises a specific alpha-subunit and a tightly bound betagamma dimer. Several human disorders that result from genetic G-protein abnormalities involve the imprinted GNAS gene, which encodes Gs alpha, the ubiquitously expressed(More)
Changes in gene expression are known to be responsible for phenotypic variation and susceptibility to diseases. Identification and annotation of the genomic sequence variants that cause gene expression changes is therefore likely to lead to a better understanding of the cause of disease at the molecular level. In this study we investigate the pattern of(More)
Wild aquatic birds are the primary reservoir of influenza A viruses, but little is known about the viruses' gene pool in wild birds. Therefore, we investigated the ecology and emergence of influenza viruses by conducting phylogenetic analysis of 70 matrix (M) genes of influenza viruses isolated from shorebirds and gulls in the Delaware Bay region and from(More)
Gastric cancer is a heterogeneous disease with diverse molecular and histological subtypes. We performed whole-genome sequencing in 100 tumor-normal pairs, along with DNA copy number, gene expression and methylation profiling, for integrative genomic analysis. We found subtype-specific genetic and epigenetic perturbations and unique mutational signatures.(More)
GNAS is a complex imprinted gene that uses multiple promoters to generate several gene products, including the G protein alpha-subunit (G(s)alpha) that couples seven-transmembrane receptors to the cAMP-generating enzyme adenylyl cyclase. Somatic activating G(s)alpha mutations, which alter key residues required for the GTPase turn-off reaction, are present(More)
The heterotrimeric G protein alpha-subunit G(s)alpha is ubiquitously expressed and mediates receptor-stimulated intracellular cAMP generation. Its gene Gnas is a complex imprinted gene which uses alternative promoters and first exons to generate other gene products, including the G(s)alpha isoform XL alpha s and the chromogranin-like protein NESP55, which(More)
Autophagy, an intracellular system for delivering portions of cytoplasm and damaged organelles to lysosomes for degradation/recycling, plays a role in many physiological processes and is disturbed in many diseases. We recently provided evidence for the role of autophagy in Pompe disease, a lysosomal storage disorder in which acid alphaglucosidase, the(More)
Histone deacetylation constitutes an important mechanism for silencing genes. The histone-deacetylase-associated mammalian Rpd3S/Sin3S corepressor complex plays key roles in repressing aberrant gene transcription from cryptic transcription initiation sites and in mitigating RNA polymerase II progression in intragenic regions of actively transcribed genes.(More)