Learn More
The isolation of stem cells from various regions of the central nervous system has raised the possibility of using them as a donor cell source for cell transplantation, where they offer great promise for repair of the diseased brain, spinal cord, and retina. Here, we have studied the migration, integration, and differentiation of EGF-responsive neurospheres(More)
GIP (Glucose-dependent Insulinotropic Polypeptide) is an important regulator of insulin secretion. The effects of truncated forms of the peptide, GIP(10-30), GIP(6-30amide) and GIP(7-30), on binding of 125I-GIP(1-42) to GIP receptors in transfected CHO-KI cells, and on cyclic AMP responses to GIP(1-42), have been studied with a view to defining further the(More)
Loss of sensory hair cells is the leading cause of deafness in humans. The mammalian cochlea cannot regenerate its complement of sensory hair cells. Thus at present, the only treatment for deafness due to sensory hair cell loss is the use of prosthetics, such as hearing aids and cochlear implants. In contrast, in nonmammalian vertebrates, such as birds,(More)
The distribution of the cell adhesion molecule BEN in the developing chick inner ear is described. BEN is first detected in the otic placode at stage 11. As the placode begins to invaginate, BEN becomes concentrated in a ventromedial region extending from the anterior to the posterior end of the otic pit. BEN expression levels increase in this region as the(More)
In the developing cochlea, sensory hair cell differentiation depends on the regulated expression of the bHLH transcription factor Atoh1. In mammals, if hair cells die they do not regenerate, leading to permanent deafness. By contrast, in non-mammalian vertebrates robust regeneration occurs through upregulation of Atoh1 in the surviving supporting cells that(More)
  • 1