Learn More
Loss of sensory hair cells is the leading cause of deafness in humans. The mammalian cochlea cannot regenerate its complement of sensory hair cells. Thus at present, the only treatment for deafness due to sensory hair cell loss is the use of prosthetics, such as hearing aids and cochlear implants. In contrast, in nonmammalian vertebrates, such as birds,(More)
In the developing cochlea, sensory hair cell differentiation depends on the regulated expression of the bHLH transcription factor Atoh1. In mammals, if hair cells die they do not regenerate, leading to permanent deafness. By contrast, in non-mammalian vertebrates robust regeneration occurs through upregulation of Atoh1 in the surviving supporting cells that(More)
Transcriptional regulation of the Drosophila slowpoke calcium-activated potassium channel gene is complex. To date, five transcriptional promoters have been identified, which are responsible for slowpoke expression in neurons, midgut cells, tracheal cells, and muscle fibers. The slowpoke promoter called Promoter C2 is active in muscles and tracheal cells.(More)
In the developing cochlea, sensory hair cell differentiation depends on the regulated expression of the bHLH transcription factor Atoh1. In mammals, if hair cells die they do not regenerate, leading to permanent deafness. By contrast, in non-mammalian vertebrates robust regeneration occurs through upregulation of Atoh1 in the surviving supporting cells that(More)
  • 1