Learn More
We consider a canonical Ramsey type problem. An edge-coloring of a graph is called m-good if each color appears at most m times at each vertex. Fixing a graph G and a positive integer m, let f (m, G) denote the smallest n such that every m-good edge-coloring of K n yields a properly edge-colored copy of G, and let g(m, G) denote the smallest n such that(More)
Given a graph G and a subset W ⊆ V (G), a Steiner W-tree is a tree of minimum order that contains all of W. Let S(W) denote the set of all vertices in G that lie on some Steiner W-tree; we call S(W) the Steiner interval of W. If S(W) = V (G), then we call W a Steiner set of G. The minimum order of a Steiner set of G is called the Steiner number of G. Given(More)
Given positive integers n and d, let A/sub 2/(n,d) denote the maximum size of a binary code of length n and minimum distance d. The well-known Gilbert-Varshamov bound asserts that A/sub 2/(n,d)/spl ges/2/sup n//V(n,d-l), where V(n,d) = /spl sigma//sub i=0//sup d/(/sub i//sup n/) is the volume of a Hamming sphere of radius d. We show that, in fact, there(More)
Given two graphs G and H, let f (G,H) denote the minimum integer n such that in every coloring of the edges of K n , there is either a copy of G with all edges having the same color or a copy of H with all edges having different colors. We show that f (G,H) is finite iff G is a star or H is acyclic. If S and T are trees with s and t edges, respectively, we(More)
A mixed hypergraph is a triple H = (X, C, D), where X is the vertex set, and each of C, D is a list of subsets of X. A strict k-coloring of H is a surjection c : X → {1,. .. , k} such that each member of C has two vertices assigned a common value and each member of D has two vertices assigned distinct values. The feasible set of H is {k : H has a strict(More)