Learn More
Complete reconstructions of vertebrate neuronal circuits on the synaptic level require new approaches. Here, serial section transmission electron microscopy was automated to densely reconstruct four volumes, totaling 670 μm(3), from the rat hippocampus as proving grounds to determine when axo-dendritic proximities predict synapses. First, in contrast with(More)
BACKGROUND With the availability of rice and sorghum genome sequences and ongoing efforts to sequence genomes of other cereal and energy crops, the grass family (Poaceae) has become a model system for comparative genomics and for better understanding gene and genome evolution that underlies phenotypic and ecological divergence of plants. While the genomic(More)
One of the central problems in neuroscience is reconstructing synaptic connectivity in neural circuits. Synapses onto a neuron can be probed by sequentially stimulating potentially pre-synaptic neurons while monitoring the membrane voltage of the post-synaptic neuron. Reconstructing a large neural circuit using such a " brute force " approach is rather(More)
BACKGROUND The moso bamboo, a large woody bamboo with the highest ecological, economic, and cultural value of all bamboos, has one of the highest growth speeds in the world. Genetic research into moso bamboo has been scarce, partly because of the lack of previous genomic resources. In the present study, for the first time, we performed de novo transcriptome(More)
Bamboo, as one of the most important non-timber forest products and fastest-growing plants in the world, represents the only major lineage of grasses that is native to forests. Recent success on the first high-quality draft genome sequence of moso bamboo (Phyllostachys edulis) provides new insights on bamboo genetics and evolution. To further extend our(More)
We propose a version of least-mean-square (LMS) algorithm for sparse system identification. Our algorithm called online linearized Bregman iteration (OLBI) is derived from minimizing the cumulative prediction error squared along with an l<sub>1</sub>-l<sub>2</sub> norm regularizer. By systematically treating the non-differentiable regularizer we arrive at a(More)
It is known since the early days of molecular biology that proteins locate their specific targets on DNA up to two orders-of-magnitude faster than the Smoluchowski three-dimensional diffusion rate. An accepted explanation of this fact is that proteins are nonspecifically adsorbed on DNA, and sliding along DNA provides for the faster one-dimensional search.(More)