Tanya Y. Berger-Wolf

Learn More
From social networks to P2P systems, network sampling arises in many settings. We present a detailed study on the nature of biases in network sampling strategies to shed light on how best to sample from networks. We investigate connections between specific biases and various measures of structural representativeness. We show that certain biases are, in(More)
We propose frameworks and algorithms for identifying communities in social networks that change over time. Communities are intuitively characterized as "unusually densely knit" subsets of a social network. This notion becomes more problematic if the social interactions change over time. Aggregating social networks over time can radically misrepresent the(More)
We propose a novel method, based on concepts from expander graphs, to sample communities in networks. We show that our sampling method, unlike previous techniques, produces subgraphs representative of community structure in the original network. These generated subgraphs may be viewed as stratified samples in that they consist of members from most or all(More)
Social interactions that occur regularly typically correspond to significant yet often infrequent and hard to detect interaction patterns. To identify such regular behavior, we propose a new mining problem of finding periodic or near periodic subgraphs in dynamic social networks. We analyze the computational complexity of the problem, showing that, unlike(More)
Social interactions are conduits for various processes spreading through a population, from rumors and opinions to behaviors and diseases. In the context of the spread of a disease or undesirable behavior, it is important to identify blockers: individuals that are most effective in stopping or slowing down the spread of a process through the population.(More)
In this work, we investigate the use of online or “crawling” algorithms to sample large social networks in order to determine the most influential or important individuals within the network (by varying definitions of network centrality). We describe a novel sampling technique based on concepts from expander graphs. We empirically evaluate this method in(More)
A software suite KINALYZER reconstructs full-sibling groups without parental information using data from codominant marker loci such as microsatellites. KINALYZER utilizes a new algorithm for sibling reconstruction in diploid organisms based on combinatorial optimization. KINALYZER makes use of a Minimum 2-Allele Set Cover approach based on Mendelian(More)
Reconstruction of sibling relationships from genetic data is an important component of many biological applications. In particular, the growing application of molecular markers (microsatellites) to study wild populations of plant and animals has created the need for new computational methods of establishing pedigree relationships, such as sibgroups, among(More)
In systems of interacting entities such as social networks, interactions that occur regularly typically correspond to significant, yet often infrequent and hard to detect, interaction patterns. To identify such regular behavior in streams of dynamic interaction data, we propose a new mining problem of finding a minimal set of periodically recurring(More)