Tanya Hansotia

Learn More
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and augments beta cell mass via activation of beta cell proliferation and islet neogenesis. We examined whether GLP-1 receptor signaling modifies the cellular susceptibility to apoptosis. Mice administered streptozotocin (STZ), an agent known to induce beta cell apoptosis, exhibit sustained(More)
Glycogen synthase kinase 3 comprises two isoforms (GSK-3alpha and GSK-3beta) that are implicated in type II diabetes, neurodegeneration, and cancer. GSK-3 activity is elevated in human and rodent models of diabetes, and various GSK-3 inhibitors improve glucose tolerance and insulin sensitivity in rodent models of obesity and diabetes. Here, we report the(More)
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut-derived incretins secreted in response to nutrient ingestion. Both incretins potentiate glucose-dependent insulin secretion and enhance beta-cell mass through regulation of beta-cell proliferation, neogenesis and apoptosis. In contrast, GLP-1, but not GIP,(More)
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) control glucose homeostasis through well-defined actions on the islet beta cell via stimulation of insulin secretion and preservation and expansion of beta cell mass. We examined the importance of endogenous incretin receptors for control of glucose(More)
The role of the gluco-incretin hormones GIP and GLP-1 in the control of beta cell function was studied by analyzing mice with inactivation of each of these hormone receptor genes, or both. Our results demonstrate that glucose intolerance was additively increased during oral glucose absorption when both receptors were inactivated. After intraperitoneal(More)
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are gut-derived incretins that potentiate glucose clearance following nutrient ingestion. Elimination of incretin receptor action in GIPR(-/-) or GLP-1R(-/-) mice produces only modest impairment in glucose homeostasis, perhaps due to compensatory upregulation of the(More)
BACKGROUND & AIMS Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) activate pathways involved in beta cell survival and proliferation in vitro; we compared the relative importance of exogenous and endogenous GIP receptor (GIPR) and GLP-1 receptor (GLP-1R) activation for beta cell cytoprotection in mice. METHODS The(More)
OBJECTIVE The incretins glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide have been postulated to play a role in regulating insulin action, although the mechanisms behind this relationship remain obscure. We used the hyperinsulinemic-euglycemic clamp to determine sites where insulin action may be modulated in double incretin receptor(More)
Plasma levels of glucagon-like peptide-1 (GLP-1) rise rapidly after nutrient ingestion through an indirect mechanism triggered from the proximal intestine and involving the vagus nerve that stimulates the L cell in the distal gut. The role of muscarinic receptors in this pathway was thus investigated using the anesthetized rat and fetal rat intestinal cells(More)
  • 1