Learn More
We present a game-theoretic treatment of distributed power control in CDMA wireless systems. We make use of the conceptual framework of noncooperative game theory to obtain a distributed and market-based control mechanism. Thus, we address not only the power control problem, but also pricing and allocation of a single resource among several users. A cost(More)
We investigate the basic trade-offs, analysis and decision processes involved in information security and intrusion detection, as well as possible application of game theoretic concepts to develop a formal decision and control framework. A generic model of a distributed intrusion detection system (IDS) with a network of sensors is considered, and two(More)
We present a power control scheme based on noncooperative game theory, using a fairly broad class of convex cost functions. The multicell CDMA wireless data network is modeled as a switched hybrid system where handoffs of mobiles between different cells correspond to discrete switching events between different subsystems. Under a set of sufficient(More)
This survey provides a structured and comprehensive overview of research on security and privacy in computer and communication networks that use game-theoretic approaches. We present a selected set of works to highlight the application of game theory in addressing different forms of security and privacy problems in computer networks and mobile applications.(More)
In this paper, we develop, analyze and implement a congestion control scheme obtained in a noncooperative game framework where each user’s cost function is composed of a pricing function, proportional to the queueing delay experienced by the user, and a broad class of utility functions capturing the user demand for bandwidth. Using a network model based on(More)
Vehicular Ad Hoc Networks (VANETs) are a peculiar subclass of mobile ad hoc networks that raise a number of technical challenges, notably from the point of view of their mobility models. In this paper, we provide a thorough analysis of the connectivity of such networks by leveraging on wellknown results of percolation theory. By means of simulations, we(More)
We study the problem of pricing uplink power in wide-band cognitive radio networks under the objective of revenue maximization for the service provider and while ensuring incentive compatibility for the users. User utility is modeled as a concave function of the signal-to-noise ratio (SNR) at the base station, and the problem is formulated as a Stackelberg(More)
We consider the problem of rate allocation among multiple simultaneous video streams sharing multiple heterogeneous access networks. We develop and evaluate an analytical framework for optimal rate allocation based on observed available bit rate (ABR) and round-trip time (RTT) over each access network and video distortion-rate (DR) characteristics. The rate(More)