Tanja Kortemme

Learn More
Protein-protein recognition plays a central role in most biological processes. Although the structures of many protein-protein complexes have been solved in molecular detail, general rules describing affinity and selectivity of protein-protein interactions do not accurately account for the extremely diverse nature of the interfaces. We investigate the(More)
We have recently completed a full re-architecturing of the ROSETTA molecular modeling program, generalizing and expanding its existing functionality. The new architecture enables the rapid prototyping of novel protocols by providing easy-to-use interfaces to powerful tools for molecular modeling. The source code of this rearchitecturing has been released as(More)
Protein-protein interactions are key components of all signal transduction processes, so methods to alter these interactions promise to become important tools in dissecting function of connectivities in these networks. We have developed a fast computational approach for the prediction of energetically important amino acid residues in protein-protein(More)
Human immunodeficiency virus (HIV) has a small genome and therefore relies heavily on the host cellular machinery to replicate. Identifying which host proteins and complexes come into physical contact with the viral proteins is crucial for a comprehensive understanding of how HIV rewires the host's cellular machinery during the course of infection. Here we(More)
The binding interface of calmodulin and a calmodulin binding peptide were reengineered by computationally designing complementary bumps and holes. This redesign led to the development of sensitive and specific pairs of mutant proteins used to sense Ca(2+) in a second generation of genetically encoded Ca(2+) indicators (cameleons). These cameleons are no(More)
method for protein structure modeling5. Our loop reconstruction protocol iterates KIC calculations as Monte Carlo moves first with loop backbone minimization in a low-resolution stage, in which side-chains are represented as centroids, and then in a high-resolution all-atom stage with minimization of the loop backbone and all side chains in the loop(More)
Helix propensities of the amino acids have been measured in alanine-based peptides in the absence of helix-stabilizing side-chain interactions. Fifty-eight peptides have been studied. A modified form of the Lifson-Roig theory for the helix-coil transition, which includes helix capping (Doig AJ, Chakrabartty A, Klingler TM, Baldwin RL, 1994, Biochemistry(More)
Postsynaptic density 95/discs large/zonus occludens-1 (PDZ) domain-interacting motifs, in addition to their well-established roles in protein scaffolding at the cell surface, are proposed to act as cis-acting determinants directing the molecular sorting of transmembrane cargo from endosomes to the plasma membrane. This hypothesis requires the existence of a(More)
Incorporation of effective backbone sampling into protein simulation and design is an important step in increasing the accuracy of computational protein modeling. Recent analysis of high-resolution crystal structures has suggested a new model, termed backrub, to describe localized, hinge-like alternative backbone and side-chain conformations observed in the(More)
Calcium/calmodulin-dependent kinase II (CaMKII) forms a highly conserved dodecameric assembly that is sensitive to the frequency of calcium pulse trains. Neither the structure of the dodecameric assembly nor how it regulates CaMKII are known. We present the crystal structure of an autoinhibited full-length human CaMKII holoenzyme, revealing an unexpected(More)