Tanja Ilmarinen

Learn More
PURPOSE The production of functional retinal pigment epithelium (RPE) cells from human embryonic (hESCs) and human induced pluripotent stem cells (hiPSCs) in defined and xeno-free conditions is highly desirable, especially for their use in cell therapy for retinal diseases. In addition, differentiated RPE cells provide an individualized disease model and(More)
Human induced pluripotent stem cells (hiPSCs) offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the(More)
Limbal epithelial stem cells (LESCs) are tissue-specific stem cells responsible for renewing the corneal epithelium. Acute trauma or chronic disease affecting LESCs may disrupt corneal epithelial renewal, causing vision threatening and painful ocular surface disorders, collectively referred to as LESC deficiency (LESCD). These disorders cannot be treated(More)
PURPOSE Retinopathy is an important manifestation of trifunctional protein (TFP) deficiencies but not of other defects of fatty acid oxidation. The common homozygous mutation in the TFP α-subunit gene HADHA (hydroxyacyl-CoA dehydrogenase), c.1528G>C, affects the long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) activity of TFP and blindness in infancy. The(More)
All material supplied via TamPub is protected by copyright and other intellectual property rights, and duplication or sale of all part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use.(More)
In this study, we investigated the suitability of ultrathin and porous polyimide (PI) membrane as a carrier for subretinal transplantation of human embryonic stem cell (hESC) -derived retinal pigment epithelial (RPE) cells in rabbits. The in vivo effects of hESC-RPE cells were analyzed by subretinal suspension injection into Royal College of Surgeons (RCS)(More)
Human pluripotent stem cells (hPSC) differentiated to retinal pigment epithelial cells (RPE) provide a promising tool for cell replacement therapies of retinal degenerative diseases. The in vitro differentiation of hPSC-RPE is still poorly understood and current differentiation protocols rely on spontaneous differentiation on fibroblast feeder cells or as(More)
  • 1