Tania Islas-Flores

  • Citations Per Year
Learn More
Receptor for activated C kinase (RACK1) is a highly conserved, eukaryotic protein of the WD-40 repeat family. Its peculiar β-propeller structure allows its interaction with multiple proteins in various plant signal-transduction pathways, including those arising from hormone responses, development, and environmental stress. During Phaseolus vulgaris root(More)
RACK1 is a scaffold protein with the ability to interact in a regulated manner with a diverse number of ligands from distinct signal-transduction pathways. This assessment allowed us to infer that it may be involved in different processes such as nodulation. In a recent study we showed by silencing, that PvRACK1 has a pivotal role in cell expansion and in(More)
A photosystem II component, the PsbO protein is essential for maximum rates of oxygen production during photosynthesis, and has been extensively characterized in plants and cyanobacteria but not in symbiotic dinoflagellates. Its close interaction with D1 protein has important environmental implications since D1 has been identified as the primary site of(More)
Two decades after the first report of the plant homolog of the Receptor for Activated C Kinase 1 (RACK1) in cultured tobacco BY2 cells, a significant advancement has been made in the elucidation of its cellular and molecular role. The protein is now implicated in many biological functions including protein translation, multiple hormonal responses,(More)
Partial peptide sequence of a 36 kDa protein from common bean embryo axes showed 100% identity with a reported beta-subunit of a heterotrimeric G protein from soybean. Analysis of the full sequence showed 96.6% identity with the reported soybean G(beta)-subunit, 86% with RACK1B and C from Arabidopsis and 66% with human and mouse RACK1, at the amino acid(More)
Plant-targeted pCB302 plasmids containing sequences encoding gfp fusions with a microtubule-binding domain; gfp with the fimbrin actin-binding domain 2; and gfp with AtRACK1C from Arabidopsis thaliana, all harbored in Agrobacterium tumefaciens, were used to assay heterologous expression on three different clades of the photosynthetic dinoflagellate,(More)
Plants are sessile organisms that rely on appropriate signal-transduction responses in order to cope with the challenges imposed by their environment, and must be able to recognize potential damage or benefit to respond accordingly. These response mechanisms are mediated by specific sets of signal receptors, effector proteins interacting through scaffolding(More)
Cassiopea xamachana jellyfish are an attractive model system to study metamorphosis and/or cnidarian-dinoflagellate symbiosis due to the ease of cultivation of their planula larvae and scyphistomae through their asexual cycle, in which the latter can bud new larvae and continue the cycle without differentiation into ephyrae. Then, a subsequent induction of(More)
  • 1