Learn More
OBJECTIVE The objective of the article is to provide an accurate model of the human cochlea with which potential distributions and thus neural excitation patterns around cochlear implant electrodes can be determined. Improvements on previous models of the implanted cochlea are that this model 1) includes the spiral nature of the cochlea as well as many(More)
Increasing the selectivity of the detection system in surface electromyography (EMG) is beneficial in the collection of information of a specific portion of the investigated muscle and to reduce the contribution of undesired components, such as non-propagating components (due to generation or end-of-fibre effects) or crosstalk from nearby muscles. A(More)
A finite-element model for the generation of single fiber action potentials in a muscle undergoing various degrees of fiber shortening is developed. The muscle is assumed fusiform with muscle fibers following a curvilinear path described by a Gaussian function. Different degrees of fiber shortening are simulated by changing the parameters of the fiber path(More)
This article investigates whether prediction of subject-specific physiological data is viable through an individualised computational model of a cochlear implant. Subject-specific predictions could be particularly useful to assess and quantify the peripheral factors that cause inter-subject variations in perception. The results of such model predictions(More)
Neural excitation profile widths at the neural level, for monopolar stimulation with Nucleus straight and contour arrays respectively, were simulated using a combined volume-conduction-neural model. The electrically evoked compound action potential profile widths at the electrode array level were calculated with a simple approximation method employing(More)
The objective of the study was to explore the effect of electrode encapsulation by fibrous scar tissue on electrical potential distributions and auditory nerve fibre excitation patterns. A finite element model in combination with an auditory nerve fibre model was used to predict changes in threshold currents and auditory nerve fibre excitation patterns. The(More)
This article reports on a study performed to investigate the occurrence and effect of ephaptic excitation in electrical stimulation of the auditory system. The objective of the study was to quantify the influence of ephaptic excitation on nerve stimulation and determine whether it is a necessary factor in neuromodeling. It was shown with a simple model that(More)
The objective of this study was to determine whether the Hodgkin-Huxley model for unmyelinated nerve fibres could be modified to predict excitability behaviour at Ranvier nodes. Only the model parameters were modified to those of human, with the equations left unaltered. A model of a single Ranvier node has been developed as part of a larger model to(More)
The ability of a human auditory nerve fibre computational model to predict threshold differences for biphasic, pseudomonophasic and alternating monophasic waveforms was investigated. The effect of increasing the interphase gap, interpulse interval and pulse rate on thresholds was also simulated. Simulations were performed for both anodic-first and(More)
The resistivity of bone is the most variable of all the tissues in the human body, ranging from 312 Ω cm to 84,745 Ω cm. Volume conduction models of cochlear implants have generally used a resistivity value of 641 Ω cm for the bone surrounding the cochlea. This study investigated the effect that bone resistivity has on modelled neural thresholds and(More)