Tamutsiwa M. Mututuvari

  • Citations Per Year
Learn More
Hydroxyapatite (HAp) is often used as a bone-implant material because it is biocompatible and osteoconductive. However, HAp possesses poor rheological properties and it is inactive against disease-causing microbes. To improve these properties, we developed a green method to synthesize multifunctional composites containing: (1) cellulose (CEL) to impart(More)
A method was developed in which cellulose (CEL) and/or chitosan (CS) were added to keratin (KER) to enable [CEL/CS+KER] composites to have better mechanical strength and wider utilization. Butylmethylimmidazolium chloride ([BMIm(+)Cl(-)]), an ionic liquid, was used as the sole solvent, and because the [BMIm(+)Cl(-)] used was recovered, the method is green(More)
Novel composites were synthesized from keratin (KER), cellulose (CEL) and chitosan (CS). The method is recyclable because majority (>88%) of [BMIm(+)Cl(-)], an ionic liquid (IL), used as the sole solvent, was recovered for reuse. Experimentally, it was confirmed that unique properties of each component remain intact in the composites, namely bactericide(More)
A method was developed in which cellulose (CEL) and/or chitosan (CS) were added to keratin (KER) to enable [CEL/CS+KER] composites formed to have better mechanical strength and wider utilization. Butylmethylimmidazolium chloride ([BMIm+Cl-]), an ionic liquid, was used as the sole solvent, and because the majority of [BMIm+Cl-] used (at least 88%) was(More)
We have developed a simple one-step method to synthesize novel supramolecular polysaccharide composites from cellulose (CEL), chitosan (CS) and benzo-15-crown 5 (B15C5). Butylmethylimidazolium chloride [BMIm(+)Cl(-)], an ionic liquid (IL), was used as a sole solvent for dissolution and preparation of the composites. Since majority of [BMIm(+)Cl(-)] used was(More)
  • 1