Tammy M. K. Cheng

Learn More
The accurate scoring of rigid-body docking orientations represents one of the major difficulties in protein-protein docking prediction. Other challenges are the development of faster and more efficient sampling methods and the introduction of receptor and ligand flexibility during simulations. Overall, good discrimination of near-native docking poses from(More)
The prediction of the effects of nonsynonymous single nucleotide polymorphisms (nsSNPs) on function depends critically on exploiting all information available on the three-dimensional structures of proteins. We describe software and databases for the analysis of nsSNPs that allow a user to move from SNP to sequence to structure to function. In both(More)
Natural variation within species reveals aspects of genome evolution and function. The fission yeast Schizosaccharomyces pombe is an important model for eukaryotic biology, but researchers typically use one standard laboratory strain. To extend the usefulness of this model, we surveyed the genomic and phenotypic variation in 161 natural isolates. We(More)
Recent analyses of human genome sequences have given rise to impressive advances in identifying non-synonymous single nucleotide polymorphisms (nsSNPs). By contrast, the annotation of nsSNPs and their links to diseases are progressing at a much slower pace. Many of the current approaches to analysing disease-associated nsSNPs use primarily sequence and(More)
Modelling proteins with multiple domains is one of the central challenges in Structural Biology. Although homology modelling has successfully been applied for prediction of protein structures, very often domain-domain interactions cannot be inferred from the structures of homologues and their prediction requires ab initio methods. Here we present a new(More)
Gauging the systemic effects of non-synonymous single nucleotide polymorphisms (nsSNPs) is an important topic in the pursuit of personalized medicine. However, it is a non-trivial task to understand how a change at the protein structure level eventually affects a cell's behavior. This is because complex information at both the protein and pathway level has(More)
Genome-wide association studies of common diseases for common, low penetrance causal variants are underway. A proportion of these will alter protein sequences, the most common of which is the non-synonymous single nucleotide polymorphism (nsSNP). It would be an advantage if the functional effects of an nsSNP on protein structure and function could be(More)
The DNA sequencing technology developed by Frederick Sanger in the 1970s established genomics as the basis of comparative genetics. The recent invention of next-generation sequencing (NGS) platform has added a new dimension to genome research by generating ultra-fast and high-throughput sequencing data in an unprecedented manner. The advent of NGS(More)
<i>PN</i> refer to the set of ties a specific individual has with other people. There is significant variation in the size of an individual's PN and this paper explores the effect of variation in PN size on information flow through complete social networks. We analyse degree distributions from two personal network datasets and seek to characterise PN size(More)
We present optimisations applied to a bespoke bio-physical molecular dynamics simulation designed to investigate chromosome condensation. Our primary focus is on domain-specific algorithmic improvements to determining short-range interaction forces between particles, as certain qualities of the simulation render traditional methods less effective. We(More)