Tamjidul Hoque

Learn More
Protein structure prediction (PSP) is computationally a very challenging problem. The challenge largely comes from the fact that the energy function that needs to be minimised in order to obtain the native structure of a given protein is not clearly known. A high resolution 20 × 20 energy model could better capture the behaviour of the actual energy(More)
This paper presents the impact of twins and the measures for their removal from the population of genetic algorithm (GA) when applied to effective conformational searching. It is conclusively shown that a twin removal strategy for a GA provides considerably enhanced performance when investigating solutions to complex ab initio protein structure prediction(More)
Proteins are sequences of amino acids bound into a linear chain that adopt a specific folded three-dimensional (3D) shape. This specific folded shape enables proteins to perform specific tasks. The protein structure prediction (PSP) by ab initio or de novo approach is promising amongst various available computational methods and can help to unravel the(More)
Healthcare institutes enrich the repository of patients’ disease related information in an increasing manner which could have been more useful by carrying out relational analysis. Data mining algorithms are proven to be quite useful in exploring useful correlations from larger data repositories. In this paper we have implemented Association Rules mining(More)
This paper describes a detailed investigation of a lattice-based HP (hydrophobic-hydrophilic) model for ab initio protein structure prediction (PSP). The outcome of the simplified HP lattice model has high degeneracy, which could mislead the prediction. The HPNX model was proposed to address the degeneracy problem as well as to avoid the conformational(More)
Traditional encodings for hydrophobic(H)-hydrophilic(P) model or HP lattice models is isomorphic, which adds unwanted variations for the same solution, thereby slowing convergence. In this paper a novel non-isomorphic encoding scheme is presented for HP lattice model, which constrains the search space. In addition, similarity comparisons are made easier and(More)
Protein structure prediction is an important but unsolved problem in biological science. Predicted structures vary much with energy functions and structure-mapping spaces. In our simplified ab initio protein structure prediction methods, we use hydrophobic-polar (HP) energy model for structure evaluation, and 3-dimensional face-centred-cubic lattice for(More)