Tamily A. Weissman

Learn More
The neocortex of the adult brain consists of neurons and glia that are generated by precursor cells of the embryonic ventricular zone. In general, glia are generated after neurons during development, but radial glia are an exception to this rule. Radial glia are generated before neurogenesis and guide neuronal migration. Radial glia are mitotically active(More)
Detailed analysis of neuronal network architecture requires the development of new methods. Here we present strategies to visualize synaptic circuits by genetically labelling neurons with multiple, distinct colours. In Brainbow transgenes, Cre/lox recombination is used to create a stochastic choice of expression between three or more fluorescent proteins(More)
The majority of neurons in the adult neocortex are produced embryonically during a brief but intense period of neuronal proliferation. The radial glial cell, a transient embryonic cell type known for its crucial role in neuronal migration, has recently been shown to function as a neuronal progenitor cell and appears to produce most cortical pyramidal(More)
The embryonic ventricular zone (VZ) of the cerebral cortex contains migrating neurons, radial glial cells, and a large population of cycling progenitor cells that generate newborn neurons. The latter two cell classes have been assumed for some time to be distinct in both function and anatomy, but the cellular anatomy of the progenitor cell type has remained(More)
Advances in imaging and cell-labeling techniques have greatly enhanced our understanding of developmental and neurobiological processes. Among vertebrates, zebrafish is uniquely suited for in vivo imaging owing to its small size and optical translucency. However, distinguishing and following cells over extended time periods remains difficult. Previous(More)
Neurotrophic factors such as nerve growth factor (NGF) promote a wide variety of responses in neurons, including differentiation, survival, plasticity, and repair. Such actions often require changes in gene expression. To identify the regulated genes and thereby to more fully understand the NGF mechanism, we carried out serial analysis of gene expression(More)
Radial glial cells play at least two crucial roles in cortical development: neuronal production in the ventricular zone (VZ) and the subsequent guidance of neuronal migration. There is evidence that radial glia-like cells are present not only during development but in the adult mammalian brain as well. In addition, radial glial cells appear to be neurogenic(More)
The role of endogenous GABA and ATP in regulating transmitter release from primary afferent terminals in the superficial dorsal horn of the spinal cord is still controversial. ATP is co-released with GABA from some inhibitory dorsal horn neurons raising the possibility that ATP could act in concert with GABA to regulate transmitter release from primary(More)
The cells that comprise the cerebellum perform a complex integration of neural inputs to influence motor control and coordination. The functioning of this circuit depends upon Purkinje cells and other cerebellar neurons forming in the precise place and time during development. Zebrafish provide a useful platform for modeling disease and studying gene(More)
BACKGROUND Regulation of alpha-synuclein levels within cells is thought to play a critical role in Parkinson's Disease (PD) pathogenesis and in other related synucleinopathies. These processes have been studied primarily in reduced preparations, including cell culture. We now develop methods to measure alpha-synuclein levels in the living mammalian brain to(More)