Tami Lasseter Clare

Learn More
The interaction of proteins with semiconductors such as silicon and diamond is of great interest for applications such as electronic biosensing. We have investigated the use of covalently bound oligo(ethylene glycol), EG, monolayers on diamond and silicon to minimize nonspecific protein adsorption. Protein adsorption was monitored by fluorescence scanning(More)
Carbon is an extremely versatile family of materials with a wide range of mechanical, optical, and mechanical properties, but many similarities in surface chemistry. As one of the most chemically stable materials known, carbon provides an outstanding platform for the development of highly tunable molecular and biomolecular interfaces. Photochemical grafting(More)
A new type of nanoscale bioswitch based on the electrical detection of chemically induced cleavage of chemical bonds, which bind individual nanowires across a pair of electrodes is demonstrated. Carbon nanofibers are manipulated using dielectrophoresis to form single-nanowire bridges across microelectrode junctions, and are anchored through a biomolecular(More)
  • 1