Tami E Cruickshank

Learn More
Phenotypic plasticity (the ability of a single genotype to produce multiple phenotypes in response to variation in the environment) is commonplace. Yet its evolutionary significance remains controversial, especially in regard to whether and how it impacts diversification and speciation. Here, we review recent theory on how plasticity promotes: (i) the(More)
The metaphor of 'genomic islands of speciation' was first used to describe heterogeneous differentiation among loci between the genomes of closely related species. The biological model proposed to explain these differences was that the regions showing high levels of differentiation were resistant to gene flow between species, while the remainder of the(More)
Adaptive phenotypic plasticity allows organisms to cope with environmental variability, and yet, despite its adaptive significance, phenotypic plasticity is neither ubiquitous nor infinite. In this review, we merge developmental and population genetic perspectives to explore costs and limits on the evolution of plasticity. Specifically, we focus on the role(More)
A central goal of evolutionary developmental biology (Evo-Devo) is to synthesize comparative molecular developmental genetics and its description of the dynamic relationship between genotype and phenotype with the microevolutionary processes (mutation, random drift, and selection) of population genetics. To this end, we analyzed sequence variation of five(More)
The retinal determination (RD) network in Drosophila comprises 14 known nuclear proteins that include DNA-binding proteins, transcriptional coactivators, kinases, and phosphatases. The composition of the network varies considerably throughout the animal kingdom, with the network in several basal insects having fewer members and with vertebrates having(More)
How ecological, developmental and genetic mechanisms interact in the genesis and subsequent diversification of morphological novelties is unknown for the vast majority of traits and organisms. Here we explore the ecological, developmental, and genetic underpinnings of a class of traits that is both novel and highly diverse: beetle horns. Specifically, we(More)
We report that females of the broad-horned flour beetle, Gnathocerus cornutus, can plastically adjust the sex ratio in their broods in response to environmental quality. Specifically, females reared in nutritionally poor environments produce broods that are 65% female, on average, with the degree of female-bias in some broods approaching 95%. In addition,(More)
We utilized available Drosophila simulans molecular population genomic data to characterize sequence polymorphism in noncoding regulatory regions and their corresponding transcribed target genes or interacting transcription factors. We highlight two properties of regulatory evolution. First, we find that sequence divergence between D. melanogaster and D.(More)
  • 1