Learn More
This paper presents a computational scheme for compressible magnetohydrody-namics (MHD). The scheme is based on the same elements that make up many modern compressible gas dynamics codes: a high-resolution upwinding based on an approximate Riemann solver for MHD and limited reconstruction; an optimally smoothing multi-stage time-stepping scheme; and(More)
[1] We present a three-dimensional (3-D) numerical ideal magnetohydrodynamics (MHD) model describing the time-dependent expulsion of a coronal mass ejection (CME) from the solar corona propagating to 1 astronomical unit (AU). The simulations are performed using the Block Adaptive Tree Solar-Wind Roe Upwind Scheme (BATS-R-US) code. We begin by developing a(More)
The Voyager spacecraft is now approaching the edge of the solar system. Near the boundary between the solar system and the interstellar medium we find that an unstable " jet-sheet " forms. The jet-sheet oscillates up and down due to a velocity shear instability. This result is due to a novel application of a state-of-art 3D Magnetohydrodynamic (MHD) code(More)
We report on the ÿrst comprehensive numerical simulation of a space weather event, starting with the generation of a CME and subsequently following this transient solar wind disturbance as it evolves into a magnetic cloud and travels through interplanetary space towards Earth where its interaction with the terrestrial magnetosphere–ionosphere system is also(More)
To model the interaction between the solar wind and the interstellar wind, magnetic fields must be included. Recently Opher et al. 2003 found that, by including the solar magnetic field in a 3D high resolution simulation using the University of Michigan BATS-R-US code, a jet-sheet structure forms beyond the solar wind Termination Shock. Here we present an(More)
Magnetic fields play an important (sometimes dominant) role in the evolution of gas clouds in the Galaxy, but the strength and orientation of the field in the interstellar medium near the heliosphere has been poorly constrained. Previous estimates of the field strength range from 1.8-2.5 microG and the field was thought to be parallel to the Galactic plane(More)
[1] In late October and early November 2003 a series of some of the most powerful solar eruptions ever registered shook the heliosphere. These ''Halloween storms'' damaged 28 satellites, knocking two out of commission, diverted airplane routes, and caused power failures in Sweden, among other problems. This paper presents a 4-day end-to-end simulation of(More)
[1] The Space Weather Modeling Framework (SWMF) provides a high-performance flexible framework for physics-based space weather simulations, as well as for various space physics applications. The SWMF integrates numerical models of the Solar Corona, Upper Atmosphere into a high-performance coupled model. The components can be represented with alternative(More)
We examine a data structure which uses flexible "adaptivity" to obtain high performance for both serial and parallel computers. The data structure is an adaptive grid which partitions a given region into regular cells. Its closest relatives are cell-based tree decompositions, but there are several important differences which lead to significant performance(More)