Tamara Tosic

Learn More
—We investigate the problem of distributed sensors' failure detection in networks with a small number of defective sensors, whose measurements differ significantly from neighboring sensor measurements. Defective sensors are represented by non-zero values in binary sparse signals. We build on the sparse nature of the binary sensor failure signals and propose(More)
We address the problem of data gathering in adhoc networks. We propose a novel framework where sensor signals are quantized and mapped to a finite field. The network nodes then combine the data from different sensors to form messages that are transmitted towards a receiver. The receiver gathers different messages and reconstructs the original signal. We(More)
We consider the problem of recovering a set of correlated signals (e.g., images from different viewpoints) from a few linear measurements per signal. We assume that each sensor in a network acquires a compressed signal in the form of linear measurements and sends it to a joint decoder for reconstruction. We propose a novel joint reconstruction algorithm(More)
In this paper, we investigate the approach of comparing two different parallel streams of phoneme posterior probability estimates for OOV word detection. The first phoneme posterior probability stream is estimated using only the knowledge of short-term acoustic observation. In our work we refer this stream as " out-of-context posteriors ". The second(More)
  • 1